June  2015, 4(2): 115-129. doi: 10.3934/eect.2015.4.115

Global dynamics on a circular domain of a diffusion predator-prey model with modified Leslie-Gower and Beddington-DeAngelis functional type

1. 

University of Tunis El Manar, National Engineering School of Tunis, Laboratory of Engineering Mathematics EPT, B.P 743, La Marsa 2078, Tunisia, Tunisia, Tunisia

2. 

Ibn Zohr University, Polydisciplinary Faculty of Ouarzazate, B.P: 638, Ouarzazate, Morocco

3. 

Normandie Univ, France; ULH, LMAH, F-76600 Le Havre; FR CNRS 3335, ISCN, 25 rue Philippe Lebon 76600 Le Havre, France

Received  May 2014 Revised  October 2014 Published  May 2015

In this paper, we present a predator-prey model with modified Leslie-Gower and Beddington-DeAngelis functional response. The model is governed by a two dimensional reaction diffusion system defined on a disc domain. The conditions of boundedness, existence of a positively invariant and attracting set are proved. Sufficient conditions of local and global stability of the positive steady state are established. In the end, we carry out some numerical simulations in order to illustrate our theoretical results and to interpret how biological processes affect spatio-temporal pattern formation.
Citation: Walid Abid, Radouane Yafia, M.A. Aziz-Alaoui, Habib Bouhafa, Azgal Abichou. Global dynamics on a circular domain of a diffusion predator-prey model with modified Leslie-Gower and Beddington-DeAngelis functional type. Evolution Equations & Control Theory, 2015, 4 (2) : 115-129. doi: 10.3934/eect.2015.4.115
References:
[1]

M. A. Aziz-Alaoui and M. Daher Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling type II shemes,, Applied Math. Let., 16 (2003), 1069. doi: 10.1016/S0893-9659(03)90096-6. Google Scholar

[2]

J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency,, J. Anim. Ecol., 44 (1975), 331. doi: 10.2307/3866. Google Scholar

[3]

A. D. Bazykin, Nonlinear Dynamics of Interacting Populations,, World Scientific Series on Nonlinear Science Series A, (1998). Google Scholar

[4]

B. I. Camara and M. A. Aziz-Alaoui, Dynamics of predator-prey model with diffusion,, Dynamics of Continuous, 15 (2008), 897. Google Scholar

[5]

B. I. Camara, Complexity of Dynamic Models of Predator-Prey with Diffusion and Applications,, Ph.D thesis, (2009). Google Scholar

[6]

F. D. Chen, On a nonlinear non-autonomous predator-prey model with diffusion and distributed delay,, J. Comput. Appl. Math., 180 (2005), 33. Google Scholar

[7]

W. Y. Chen and M. X. Wang, Qualitative analysis of predator-prey models with Beddington-DeAngelis functional response and diffusion,, Math. Comput. Model., 42 (2005), 31. doi: 10.1016/j.mcm.2005.05.013. Google Scholar

[8]

M. O. Daher and M. A. Aziz-Alaoui, On the dynamics of a predator-prey model with the Holling-Tanner functional,, in Proc. ESMTB Conf. (ed. V. Capasso), (2002), 270. Google Scholar

[9]

D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for trophic interaction,, Ecology, 56 (1975), 881. Google Scholar

[10]

M. P. Hassell and C. C. Varley, New inductive population model for insect parasites and its bearing on biological control,, Nature, 223 (1969), 1133. doi: 10.1038/2231133a0. Google Scholar

[11]

S. B. Hsu, Constructing lyapunov functions for mathematical models in population biology,, Taiwanese Journal of Math., 9 (2005), 151. Google Scholar

[12]

Z. Li, M. Han and F. Chen, Global stability of a stage-structured predator-prey model with modified Leslie-Gower and Holling-type II schemes,, Int. J. Biomath., 5 (2012). Google Scholar

[13]

A. J. Lotka, Elements of Physical Biology,, Williams and Wilkins, (1925). Google Scholar

[14]

R. M. May, Stability and Complexity in Model Ecosystem,, Princeton Univ. Press, (1976). doi: 10.1109/TSMC.1976.4309488. Google Scholar

[15]

J. Murray, Mathematical Biology,, Springer-Verlag, (1993). Google Scholar

[16]

J. Murray, Mathematical Biology: II. Spatial Models and Biomedical Applications,, Springer-Verlag, (2003). Google Scholar

[17]

M. L. Rosenzweig and R. H. MacArthue, Graphical representation and stability conditions of predator-prey interactions,, Am. Nat., 97 (1963), 209. doi: 10.1086/282272. Google Scholar

[18]

V. Volterra, Variations and fluctuations of the number of individuals in animal species living together,, J. Cons. int. Explor. Mer., 3 (1928), 3. doi: 10.1093/icesjms/3.1.3. Google Scholar

[19]

S. Yu, Global stability of a modified Leslie-Gower model with Beddington-DeAngelis functional response,, Advances in Difference Equations, 2014 (2014). doi: 10.1186/1687-1847-2014-84. Google Scholar

[20]

R. Yafia, F. El Adnani and H. Talibi Alaoui, Stability of limit cycle in a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay,, Appl. Math. Sci., 1 (2007), 119. Google Scholar

[21]

R. Yafia, F. El Adnani and H. Talibi Alaoui, Limit cycle and numerical similations for small and large delays in a predator-prey model with modified Leslie-Gower and Holling-type II schemes,, Nonlinear Analysis Real World Appl., 9 (2008), 2055. doi: 10.1016/j.nonrwa.2006.12.017. Google Scholar

[22]

R. Yafia and M. A. Aziz Alaoui, Existence of periodic travelling waves solutions in predator prey model with diffusion,, Applied Mathematical Modelling, 37 (2013), 3635. doi: 10.1016/j.apm.2012.08.003. Google Scholar

[23]

S. B. Yu, Global asymptotic stability of a predator-prey model with modified Leslie-Gower and Holling-type II schemes,, Discrete Dyn. Nat. Soc., (2012). Google Scholar

[24]

Z. Yao, S. Xie and N. Yu, Dynamics of cooperative predator-prey system with impulsive effects and Beddington-DeAngelis functional response,, J. Egypt. Math. Soc., 21 (2013), 213. doi: 10.1016/j.joems.2013.04.008. Google Scholar

show all references

References:
[1]

M. A. Aziz-Alaoui and M. Daher Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling type II shemes,, Applied Math. Let., 16 (2003), 1069. doi: 10.1016/S0893-9659(03)90096-6. Google Scholar

[2]

J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency,, J. Anim. Ecol., 44 (1975), 331. doi: 10.2307/3866. Google Scholar

[3]

A. D. Bazykin, Nonlinear Dynamics of Interacting Populations,, World Scientific Series on Nonlinear Science Series A, (1998). Google Scholar

[4]

B. I. Camara and M. A. Aziz-Alaoui, Dynamics of predator-prey model with diffusion,, Dynamics of Continuous, 15 (2008), 897. Google Scholar

[5]

B. I. Camara, Complexity of Dynamic Models of Predator-Prey with Diffusion and Applications,, Ph.D thesis, (2009). Google Scholar

[6]

F. D. Chen, On a nonlinear non-autonomous predator-prey model with diffusion and distributed delay,, J. Comput. Appl. Math., 180 (2005), 33. Google Scholar

[7]

W. Y. Chen and M. X. Wang, Qualitative analysis of predator-prey models with Beddington-DeAngelis functional response and diffusion,, Math. Comput. Model., 42 (2005), 31. doi: 10.1016/j.mcm.2005.05.013. Google Scholar

[8]

M. O. Daher and M. A. Aziz-Alaoui, On the dynamics of a predator-prey model with the Holling-Tanner functional,, in Proc. ESMTB Conf. (ed. V. Capasso), (2002), 270. Google Scholar

[9]

D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for trophic interaction,, Ecology, 56 (1975), 881. Google Scholar

[10]

M. P. Hassell and C. C. Varley, New inductive population model for insect parasites and its bearing on biological control,, Nature, 223 (1969), 1133. doi: 10.1038/2231133a0. Google Scholar

[11]

S. B. Hsu, Constructing lyapunov functions for mathematical models in population biology,, Taiwanese Journal of Math., 9 (2005), 151. Google Scholar

[12]

Z. Li, M. Han and F. Chen, Global stability of a stage-structured predator-prey model with modified Leslie-Gower and Holling-type II schemes,, Int. J. Biomath., 5 (2012). Google Scholar

[13]

A. J. Lotka, Elements of Physical Biology,, Williams and Wilkins, (1925). Google Scholar

[14]

R. M. May, Stability and Complexity in Model Ecosystem,, Princeton Univ. Press, (1976). doi: 10.1109/TSMC.1976.4309488. Google Scholar

[15]

J. Murray, Mathematical Biology,, Springer-Verlag, (1993). Google Scholar

[16]

J. Murray, Mathematical Biology: II. Spatial Models and Biomedical Applications,, Springer-Verlag, (2003). Google Scholar

[17]

M. L. Rosenzweig and R. H. MacArthue, Graphical representation and stability conditions of predator-prey interactions,, Am. Nat., 97 (1963), 209. doi: 10.1086/282272. Google Scholar

[18]

V. Volterra, Variations and fluctuations of the number of individuals in animal species living together,, J. Cons. int. Explor. Mer., 3 (1928), 3. doi: 10.1093/icesjms/3.1.3. Google Scholar

[19]

S. Yu, Global stability of a modified Leslie-Gower model with Beddington-DeAngelis functional response,, Advances in Difference Equations, 2014 (2014). doi: 10.1186/1687-1847-2014-84. Google Scholar

[20]

R. Yafia, F. El Adnani and H. Talibi Alaoui, Stability of limit cycle in a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay,, Appl. Math. Sci., 1 (2007), 119. Google Scholar

[21]

R. Yafia, F. El Adnani and H. Talibi Alaoui, Limit cycle and numerical similations for small and large delays in a predator-prey model with modified Leslie-Gower and Holling-type II schemes,, Nonlinear Analysis Real World Appl., 9 (2008), 2055. doi: 10.1016/j.nonrwa.2006.12.017. Google Scholar

[22]

R. Yafia and M. A. Aziz Alaoui, Existence of periodic travelling waves solutions in predator prey model with diffusion,, Applied Mathematical Modelling, 37 (2013), 3635. doi: 10.1016/j.apm.2012.08.003. Google Scholar

[23]

S. B. Yu, Global asymptotic stability of a predator-prey model with modified Leslie-Gower and Holling-type II schemes,, Discrete Dyn. Nat. Soc., (2012). Google Scholar

[24]

Z. Yao, S. Xie and N. Yu, Dynamics of cooperative predator-prey system with impulsive effects and Beddington-DeAngelis functional response,, J. Egypt. Math. Soc., 21 (2013), 213. doi: 10.1016/j.joems.2013.04.008. Google Scholar

[1]

Jinliang Wang, Jiying Lang, Xianning Liu. Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3215-3233. doi: 10.3934/dcdsb.2015.20.3215

[2]

Renji Han, Binxiang Dai, Lin Wang. Delay induced spatiotemporal patterns in a diffusive intraguild predation model with Beddington-DeAngelis functional response. Mathematical Biosciences & Engineering, 2018, 15 (3) : 595-627. doi: 10.3934/mbe.2018027

[3]

Sze-Bi Hsu, Shigui Ruan, Ting-Hui Yang. On the dynamics of two-consumers-one-resource competing systems with Beddington-DeAngelis functional response. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2331-2353. doi: 10.3934/dcdsb.2013.18.2331

[4]

Haiyin Li, Yasuhiro Takeuchi. Dynamics of the density dependent and nonautonomous predator-prey system with Beddington-DeAngelis functional response. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1117-1134. doi: 10.3934/dcdsb.2015.20.1117

[5]

Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859

[6]

Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035

[7]

Seong Lee, Inkyung Ahn. Diffusive predator-prey models with stage structure on prey and beddington-deangelis functional responses. Communications on Pure & Applied Analysis, 2017, 16 (2) : 427-442. doi: 10.3934/cpaa.2017022

[8]

Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019214

[9]

Jian-Jun Xu, Junichiro Shimizu. Asymptotic theory for disc-like crystal growth (II): interfacial instability and pattern formation at early stage of growth. Communications on Pure & Applied Analysis, 2004, 3 (3) : 527-543. doi: 10.3934/cpaa.2004.3.527

[10]

Julien Cividini. Pattern formation in 2D traffic flows. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 395-409. doi: 10.3934/dcdss.2014.7.395

[11]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589

[12]

Peter Rashkov. Remarks on pattern formation in a model for hair follicle spacing. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1555-1572. doi: 10.3934/dcdsb.2015.20.1555

[13]

Rui Peng, Fengqi Yi. On spatiotemporal pattern formation in a diffusive bimolecular model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 217-230. doi: 10.3934/dcdsb.2011.15.217

[14]

Tian Ma, Shouhong Wang. Dynamic transition and pattern formation for chemotactic systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2809-2835. doi: 10.3934/dcdsb.2014.19.2809

[15]

Taylan Sengul, Shouhong Wang. Pattern formation and dynamic transition for magnetohydrodynamic convection. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2609-2639. doi: 10.3934/cpaa.2014.13.2609

[16]

Qiumei Zhang, Daqing Jiang, Li Zu. The stability of a perturbed eco-epidemiological model with Holling type II functional response by white noise. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 295-321. doi: 10.3934/dcdsb.2015.20.295

[17]

Sze-Bi Hsu, Tzy-Wei Hwang, Yang Kuang. Global dynamics of a Predator-Prey model with Hassell-Varley Type functional response. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 857-871. doi: 10.3934/dcdsb.2008.10.857

[18]

Yu-Xia Wang, Wan-Tong Li. Spatial degeneracy vs functional response. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2811-2837. doi: 10.3934/dcdsb.2016074

[19]

E. Cabral Balreira, Saber Elaydi, Rafael Luís. Local stability implies global stability for the planar Ricker competition model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 323-351. doi: 10.3934/dcdsb.2014.19.323

[20]

Martin Baurmann, Wolfgang Ebenhöh, Ulrike Feudel. Turing instabilities and pattern formation in a benthic nutrient-microorganism system. Mathematical Biosciences & Engineering, 2004, 1 (1) : 111-130. doi: 10.3934/mbe.2004.1.111

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

[Back to Top]