Advanced Search
Article Contents
Article Contents

Constrained controllability for lumped linear systems

Abstract Related Papers Cited by
  • We consider linear lumped control systems of the form $y'(t)=Ay(t)+Bu(t)$ where $A \in \mathbb{R}^{m\times m}$, $B \in \mathbb{R}^{m\times p}$. Taking into account eventual control constraint (such as saturation), we study the problem of controllability by using a general variational approach. The results are applied to the following saturation constraints on the control $u(t)=(u_{1}(t), ..., u_{p}(t))$: (i) the quadratic one specified by $\underset{j=1}{\overset{p}\sum}\left|u_{j}(t)\right|^{2} \leq 1$ for all $0\leq t\leq T$ and (ii) the polyhedral one characterized by $\underset{1 \leq j \leq p}{\max}\left|u_{j}(t)\right| \leq 1$ for all $0\leq t\leq T$.
    Mathematics Subject Classification: Primary: 93B05, 93C35; Secondary: 93C05.


    \begin{equation} \\ \end{equation}
  • [1]

    L. Berrahmoune, A variational approach to constrained controllability for distributed systems, J. Math. Anal. Appl., 416 (2014), 805-823.doi: 10.1016/j.jmaa.2014.03.004.


    G. Garcia, A. H. Glattfelder and S. Tarbourierch, Advanced Strategies in Control Systems with Input and Output Constraints, Springer-Verlag, 2007.doi: 10.1007/978-3-540-37010-9.


    K. M. Griordaris and V. Kapila, Actuator Saturation Control, Marcel Dekker, 2002.


    T. Hu, Z. Lin and L. Qiu, An explicit description of null controllable regions of linear systems with saturating actuators, Systems Contr. Lett., 47 (2002), 65-78.doi: 10.1016/S0167-6911(02)00176-7.


    E. B. Lee and L. Markus, Foundations of Optimal Control Theory, SIAM Series in Applied Mathematics, John Wiley and Sons, 1967.


    J. L. Lions, Exact controllability, stabilizability and perturbations for distributed systems, SIAM Rev., 30 (1988), 1-68.doi: 10.1137/1030001.


    S. Micu and E. Zuazua, An introduction to the controllability of partial differential equations, in Quelques Questions de Théorie du Contrôle (ed. T. Sari), Collection Travaux en cours, Hermann, Paris, 2005.


    L. Pandolfi, Linear control systems: Controllability with constrained control, J. Optim. Theory Appl., 19 (1976), 577-585.doi: 10.1007/BF00934656.


    W. E. Schmitendorf and B. R. Barmish, Null controllability of linear systems with constrained control, Siam J. Control Optim., 18 (1980), 327-345.doi: 10.1137/0318025.


    E. Sontag, An algebraic approach to bounded controllability of linear systems, Internat. J. Control, 39 (1984), 181-188.doi: 10.1080/00207178408933158.


    E. Sontag, Mathematical Control Theory. Deterministic Finite-Dimensional Systems, Vol. 6, Texts in Applied Mathematics, Springer-Verlag, 1998.doi: 10.1007/978-1-4612-0577-7.


    E. Zuazua, Switching control, J. Eur. Math. Soc., 13 (2011), 85-117.doi: 10.4171/JEMS/245.

  • 加载中

Article Metrics

HTML views() PDF downloads(74) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint