\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Flux reconstruction for hyperbolic systems: Sensors and simulations

Abstract Related Papers Cited by
  • This paper aims to establish necessary conditions for sensors structure (number and location) in order to obtain regional boundary gradient observability for hyperbolic system. The obtained results are applied to a two-dimensional diffusion process considering various types of sensors. Also, we will explore an approach that can reconstruct the gradient on a part $\Gamma$ of the boundary $\partial\Omega$ of the evolution domain $\Omega$. The simulations illustrate the established results and lead to some conjectures.
    Mathematics Subject Classification: Primary: 93B07; Secondary: 37N35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Boutoulout, H. Bourray and A. Khazari, Gradient observability for hyperbolic system, International Review of Automatic Control, 6 (2013), 274-263.

    [2]

    A. Boutoulout, H. Bourray and A. Khazari, Flux observability for hyperbolic systems, Appl. Math. Inf. Sci. Lett., 2 (2014), 13-24.

    [3]

    R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems Theory, Springer Lecture Notes in Control and Informations, Science, Springer, New York, 1978.

    [4]

    R. F. Curtain and H. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory, Texts in Applied Mathematics, Springer-Verlag, New York, 1995.doi: 10.1007/978-1-4612-4224-6.

    [5]

    A. El Jai and A. J. Pritchard, Sensors and actuators in distributed systems analysis, Internat. J. Control, 46 (1987), 1139-1153.doi: 10.1080/00207178708933956.

    [6]

    A. El Jai, M. C. Simon and E. Zerrik, Regional observability and sensor structures, Sensors and Actuators Journal, 39 (1993), 95-102.

    [7]

    A. El Jai, M. Amouroux and E. Zerrik, Regional observability of distributed systems, Int. J. Syst. Sci., 25 (1994), 301-313.doi: 10.1080/00207729408928961.

    [8]

    A. M. Micheletti, Perturbazione Dello Spettro di un Opertore Ellitico di Tipo Variazionale, in Relazione ad una Variazione del Compo, Ricerche di matematica, in Italian, XXV, Fasc II, 1976.

    [9]

    J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, Tome 1, Contrôlabilité Exacte, Masson, Paris, 1988.

    [10]

    J. L. Lions and E. Magenes, Problèmes Aux Limites non Homogènes et Applications. Vol. 1, Travaux et Recherches Mathmatiques, No. 17, Dunod, Paris, 1968.

    [11]

    E. Zerrik, A. Boutoulout and A. El Jai, Actuators and regional boundary controllability of parabolic systems, Int. J. Syst. Sci., 31 (2000), 73-82.doi: 10.1080/002077200291479.

    [12]

    E. Zerrik and H. Bourray, Gradient observability for diffustion system, Int. J. Appl. Math. Comput. Sci., 13 (2003), 139-150.

    [13]

    E. Zerrik and H. Bourray, Flux reconstruction: Sensors and simulations, Sensors and Actuators A, 109 (2003), 34-46.doi: 10.1016/S0924-4247(03)00358-3.

    [14]

    E. Zerrik, H. Bourray and S. Benhadid, Sensors and Regional observability of the wave equation, Sensors and Actuators Journal, 138 (2007), 313-328.doi: 10.1016/j.sna.2007.05.017.

    [15]

    E. Zerrik, H. Bourray and S. Benhadid, Sensors and boundary state reconstruction of hyperbolic systems, Int. J. Appl. Math. Comput. Sci., 20 (2010), 227-238.doi: 10.2478/v10006-010-0016-4.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(80) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return