June  2015, 4(2): 177-192. doi: 10.3934/eect.2015.4.177

Flux reconstruction for hyperbolic systems: Sensors and simulations

1. 

TSI Team, MACS Laboratory, Moulay Ismail University, Faculty of Sciences, PB 11201, Zitoune-Meknes, Morocco, Morocco

Received  April 2014 Revised  October 2014 Published  May 2015

This paper aims to establish necessary conditions for sensors structure (number and location) in order to obtain regional boundary gradient observability for hyperbolic system. The obtained results are applied to a two-dimensional diffusion process considering various types of sensors. Also, we will explore an approach that can reconstruct the gradient on a part $\Gamma$ of the boundary $\partial\Omega$ of the evolution domain $\Omega$. The simulations illustrate the established results and lead to some conjectures.
Citation: Adil Khazari, Ali Boutoulout. Flux reconstruction for hyperbolic systems: Sensors and simulations. Evolution Equations & Control Theory, 2015, 4 (2) : 177-192. doi: 10.3934/eect.2015.4.177
References:
[1]

A. Boutoulout, H. Bourray and A. Khazari, Gradient observability for hyperbolic system,, International Review of Automatic Control, 6 (2013), 274.

[2]

A. Boutoulout, H. Bourray and A. Khazari, Flux observability for hyperbolic systems,, Appl. Math. Inf. Sci. Lett., 2 (2014), 13.

[3]

R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems Theory,, Springer Lecture Notes in Control and Informations, (1978).

[4]

R. F. Curtain and H. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory,, Texts in Applied Mathematics, (1995). doi: 10.1007/978-1-4612-4224-6.

[5]

A. El Jai and A. J. Pritchard, Sensors and actuators in distributed systems analysis,, Internat. J. Control, 46 (1987), 1139. doi: 10.1080/00207178708933956.

[6]

A. El Jai, M. C. Simon and E. Zerrik, Regional observability and sensor structures,, Sensors and Actuators Journal, 39 (1993), 95.

[7]

A. El Jai, M. Amouroux and E. Zerrik, Regional observability of distributed systems,, Int. J. Syst. Sci., 25 (1994), 301. doi: 10.1080/00207729408928961.

[8]

A. M. Micheletti, Perturbazione Dello Spettro di un Opertore Ellitico di Tipo Variazionale, in Relazione ad una Variazione del Compo,, Ricerche di matematica, XXV (1976).

[9]

J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués,, Tome 1, 1 (1988).

[10]

J. L. Lions and E. Magenes, Problèmes Aux Limites non Homogènes et Applications. Vol. 1,, Travaux et Recherches Mathmatiques, (1968).

[11]

E. Zerrik, A. Boutoulout and A. El Jai, Actuators and regional boundary controllability of parabolic systems,, Int. J. Syst. Sci., 31 (2000), 73. doi: 10.1080/002077200291479.

[12]

E. Zerrik and H. Bourray, Gradient observability for diffustion system,, Int. J. Appl. Math. Comput. Sci., 13 (2003), 139.

[13]

E. Zerrik and H. Bourray, Flux reconstruction: Sensors and simulations,, Sensors and Actuators A, 109 (2003), 34. doi: 10.1016/S0924-4247(03)00358-3.

[14]

E. Zerrik, H. Bourray and S. Benhadid, Sensors and Regional observability of the wave equation,, Sensors and Actuators Journal, 138 (2007), 313. doi: 10.1016/j.sna.2007.05.017.

[15]

E. Zerrik, H. Bourray and S. Benhadid, Sensors and boundary state reconstruction of hyperbolic systems,, Int. J. Appl. Math. Comput. Sci., 20 (2010), 227. doi: 10.2478/v10006-010-0016-4.

show all references

References:
[1]

A. Boutoulout, H. Bourray and A. Khazari, Gradient observability for hyperbolic system,, International Review of Automatic Control, 6 (2013), 274.

[2]

A. Boutoulout, H. Bourray and A. Khazari, Flux observability for hyperbolic systems,, Appl. Math. Inf. Sci. Lett., 2 (2014), 13.

[3]

R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems Theory,, Springer Lecture Notes in Control and Informations, (1978).

[4]

R. F. Curtain and H. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory,, Texts in Applied Mathematics, (1995). doi: 10.1007/978-1-4612-4224-6.

[5]

A. El Jai and A. J. Pritchard, Sensors and actuators in distributed systems analysis,, Internat. J. Control, 46 (1987), 1139. doi: 10.1080/00207178708933956.

[6]

A. El Jai, M. C. Simon and E. Zerrik, Regional observability and sensor structures,, Sensors and Actuators Journal, 39 (1993), 95.

[7]

A. El Jai, M. Amouroux and E. Zerrik, Regional observability of distributed systems,, Int. J. Syst. Sci., 25 (1994), 301. doi: 10.1080/00207729408928961.

[8]

A. M. Micheletti, Perturbazione Dello Spettro di un Opertore Ellitico di Tipo Variazionale, in Relazione ad una Variazione del Compo,, Ricerche di matematica, XXV (1976).

[9]

J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués,, Tome 1, 1 (1988).

[10]

J. L. Lions and E. Magenes, Problèmes Aux Limites non Homogènes et Applications. Vol. 1,, Travaux et Recherches Mathmatiques, (1968).

[11]

E. Zerrik, A. Boutoulout and A. El Jai, Actuators and regional boundary controllability of parabolic systems,, Int. J. Syst. Sci., 31 (2000), 73. doi: 10.1080/002077200291479.

[12]

E. Zerrik and H. Bourray, Gradient observability for diffustion system,, Int. J. Appl. Math. Comput. Sci., 13 (2003), 139.

[13]

E. Zerrik and H. Bourray, Flux reconstruction: Sensors and simulations,, Sensors and Actuators A, 109 (2003), 34. doi: 10.1016/S0924-4247(03)00358-3.

[14]

E. Zerrik, H. Bourray and S. Benhadid, Sensors and Regional observability of the wave equation,, Sensors and Actuators Journal, 138 (2007), 313. doi: 10.1016/j.sna.2007.05.017.

[15]

E. Zerrik, H. Bourray and S. Benhadid, Sensors and boundary state reconstruction of hyperbolic systems,, Int. J. Appl. Math. Comput. Sci., 20 (2010), 227. doi: 10.2478/v10006-010-0016-4.

[1]

Tatsien Li, Bopeng Rao, Zhiqiang Wang. Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 243-257. doi: 10.3934/dcds.2010.28.243

[2]

Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1017-1029. doi: 10.3934/dcdss.2020060

[3]

João Borges de Sousa, Bernardo Maciel, Fernando Lobo Pereira. Sensor systems on networked vehicles. Networks & Heterogeneous Media, 2009, 4 (2) : 223-247. doi: 10.3934/nhm.2009.4.223

[4]

Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control & Related Fields, 2013, 3 (2) : 121-142. doi: 10.3934/mcrf.2013.3.121

[5]

Tatsien Li (Daqian Li). Global exact boundary controllability for first order quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1419-1432. doi: 10.3934/dcdsb.2010.14.1419

[6]

Matthias Eller, Daniel Toundykov. Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems. Evolution Equations & Control Theory, 2012, 1 (2) : 271-296. doi: 10.3934/eect.2012.1.271

[7]

Huey-Er Lin, Jian-Guo Liu, Wen-Qing Xu. Effects of small viscosity and far field boundary conditions for hyperbolic systems. Communications on Pure & Applied Analysis, 2004, 3 (2) : 267-290. doi: 10.3934/cpaa.2004.3.267

[8]

Tatsien Li, Bopeng Rao, Zhiqiang Wang. A note on the one-side exact boundary controllability for quasilinear hyperbolic systems. Communications on Pure & Applied Analysis, 2009, 8 (1) : 405-418. doi: 10.3934/cpaa.2009.8.405

[9]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019033

[10]

Tatsien Li, Libin Wang. Global exact shock reconstruction for quasilinear hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 597-609. doi: 10.3934/dcds.2006.15.597

[11]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[12]

Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59

[13]

Atte Aalto, Jarmo Malinen. Compositions of passive boundary control systems. Mathematical Control & Related Fields, 2013, 3 (1) : 1-19. doi: 10.3934/mcrf.2013.3.1

[14]

Paola Loreti, Daniela Sforza. Observability of $N$-dimensional integro-differential systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 745-757. doi: 10.3934/dcdss.2016026

[15]

Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 829-854. doi: 10.3934/mcrf.2018037

[16]

Zhiyong Sun, Toshiharu Sugie. Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 297-318. doi: 10.3934/naco.2019020

[17]

Gang Chen, Zaiming Liu, Jingchuan Zhang. Analysis of strategic customer behavior in fuzzy queueing systems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018157

[18]

Simon Levin, Anastasios Xepapadeas. Transboundary capital and pollution flows and the emergence of regional inequalities. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 913-922. doi: 10.3934/dcdsb.2017046

[19]

Sebastian Aniţa, Vincenzo Capasso, Ana-Maria Moşneagu. Global eradication for spatially structured populations by regional control. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2511-2533. doi: 10.3934/dcdsb.2018263

[20]

Volodymyr O. Kapustyan, Ivan O. Pyshnograiev, Olena A. Kapustian. Quasi-optimal control with a general quadratic criterion in a special norm for systems described by parabolic-hyperbolic equations with non-local boundary conditions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1243-1258. doi: 10.3934/dcdsb.2019014

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]