June  2015, 4(2): 205-220. doi: 10.3934/eect.2015.4.205

Finite rank distributed control for the resistive diffusion equation using damping assignment

1. 

LCIS Laboratoire de Conception et d'Intégration des Systèmes, Grenoble Alpes University, F-26902, France, France

Received  May 2014 Revised  October 2014 Published  May 2015

A first extension of the IDA-PBC control synthesis to infinite dimensional port Hamiltonian systems is investigated, using the same idea as for the finite dimensional case, that is transform the original model into a closed loop target Hamiltonian model using feedback control. To achieve this goal both finite rank distributed control and boundary control are used. The proposed class of considered port Hamiltonian distributed parameters systems is first defined. Then the matching equation is derived for this class before considering the particular case of damping assignment on the resistive diffusion example, for the radial diffusion of the poloidal magnetic flux in tokamak reactors.
Citation: Ngoc Minh Trang Vu, Laurent Lefèvre. Finite rank distributed control for the resistive diffusion equation using damping assignment. Evolution Equations & Control Theory, 2015, 4 (2) : 205-220. doi: 10.3934/eect.2015.4.205
References:
[1]

M. Becherif and E. Mendes, Stability and robustness of disturbed-port controlled hamiltonian systems with dissipation,, in Proceedings of the 16th IFAC World Congress (Praha, (2005).   Google Scholar

[2]

J. Blum, Numerical Simulation and Optimal Control in Plasma Physics,, Gauthier-Villars, (1989).   Google Scholar

[3]

J. Bucalossi, A. Argouarch, V. Basiuk, et al., Feasibility study of an actively cooled tungsten divertor in tore supra for iter technology testing,, Fusion Engineering and Design, 86 (2011), 684.  doi: 10.1016/j.fusengdes.2011.01.114.  Google Scholar

[4]

B. Jacob and H. Zwart, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces,, Operator Theory: Advances and Applications, (2012).  doi: 10.1007/978-3-0348-0399-1.  Google Scholar

[5]

Y. Le Gorrec, H. Zwart and B. M. Maschke, Dirac structures and boundary control systems associated with skew-symmetric differential operators,, SIAM J. of Control and Optimization, 44 (2005), 1864.  doi: 10.1137/040611677.  Google Scholar

[6]

A. Macchelli, Boundary energy shaping of linear distributed Port-Hamiltonian systems,, European Journal of Control, 19 (2013), 521.  doi: 10.1016/j.ejcon.2013.10.002.  Google Scholar

[7]

A. Macchelli, A. J. van der Schaft and C. Melchiorri, Port Hamiltonian formulation of infinite dimensional systems. I. Modeling,, Proc. 50th IEEE Conference on Decisions and Control (CDC04), (2004), 3762.  doi: 10.1109/CDC.2004.1429324.  Google Scholar

[8]

_________, Port Hamiltonian formulation of infinite dimensional systems. II. Boundary control by interconnection,, in 43rd IEEE Conference on Decisions and Control (CDC04), (2004).   Google Scholar

[9]

R. Ortega, A. J. van der Schaft, B. Maschke and G. Escobar, Interconnection and damping assignment: Passivity-based control of port-controlled Hamiltonian systems,, Automatica, 38 (2002), 585.  doi: 10.1016/S0005-1098(01)00278-3.  Google Scholar

[10]

R. Ortega and E. Garcia-Canseco, Interconnection and damping assignement passivit-based control: A survey,, European Journal of Control, 10 (2004), 432.  doi: 10.3166/ejc.10.432-450.  Google Scholar

[11]

M. Schöberl and A. Siuka, On casimir functionals for field fheories in port-hamiltonian description for control purposes,, in 50nd IEEE Conference on Decision and Control, (2011).   Google Scholar

[12]

G. E. Swaters, Introduction to Hamiltonian Fluid Dynamics and Stability Theory,, Chapman & Hal/CRC, (2000).   Google Scholar

[13]

A. J. van der Schaft and B. M. Maschke, Hamiltonian formulation of distributed parameter systems with boundary energy flow,, J. of Geometry and Physics, 42 (2002), 166.  doi: 10.1016/S0393-0440(01)00083-3.  Google Scholar

[14]

J. Villegas, H. Zwart, Y. Le Gorrec and B. M. Maschke, Stability and stabilization of a class of boundary control systems,, IEEE Transaction On Automatic Control, 54 (2009), 142.  doi: 10.1109/TAC.2008.2007176.  Google Scholar

[15]

J. A. Villegas, H. Zwart, Y. Le Gorrec, B. Maschke and A. J. van der Schaft, Stability and stabilization of a class of boundary control systems,, in Proc. 44th IEEE Conference on Decision and Control and European Control Conference ECC 2005 (Seville, (2005), 3850.  doi: 10.1109/CDC.2005.1582762.  Google Scholar

[16]

J. A. Villegas, Y. Le Gorrec, H. Zwart and B. Maschke, Boundary control for a class of dissipative differential operators including diffusion systems,, in Proc. 7th International Symposium on Mathematical Theory of Networks and Systems (Kyoto, (2006), 297.   Google Scholar

[17]

T. N. M. Vu, L. Lefèvre and B. Maschke, Port-hamiltonian formulation for systems of conservation laws: application to plasma dynamics in tokamak reactors,, in 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control, (2012).   Google Scholar

[18]

T. N. M. Vu, L. Lefèvre, R. Nouailletas and S. Brémond, Geometric discretization for a plasma control model,, in IFAC Joint conference: 5th Symposium on System Structure and Control, ().   Google Scholar

[19]

________, An ida-pbc approach for the control of 1d plasma profile in tokamaks,, in 52nd IEEE Conference on Decision and Control, (2013).   Google Scholar

[20]

T. N. M. Vu, R. Nouailletas, L. Lefèvre, S. Brémond and F. Felici, Ida-pbc control for the coupled plasma poloidal magnetic flux and heat radial diffusion equations in tokamaks,, in 19th World Congress of the International Federation of Automatic Control, (2014).   Google Scholar

[21]

J. Wesson, Tokamaks,, Third edition, (2004).   Google Scholar

[22]

E. Witrant, E. Joffrin, S. Brémond, G. Giruzzi, D. Mazon, O. Barana and P. Moreau, A control-oriented model of the current profile on tokamak plasma,, Plasma Physics and Controlled Fusion, 49 (2007), 1075.  doi: 10.1088/0741-3335/49/7/009.  Google Scholar

show all references

References:
[1]

M. Becherif and E. Mendes, Stability and robustness of disturbed-port controlled hamiltonian systems with dissipation,, in Proceedings of the 16th IFAC World Congress (Praha, (2005).   Google Scholar

[2]

J. Blum, Numerical Simulation and Optimal Control in Plasma Physics,, Gauthier-Villars, (1989).   Google Scholar

[3]

J. Bucalossi, A. Argouarch, V. Basiuk, et al., Feasibility study of an actively cooled tungsten divertor in tore supra for iter technology testing,, Fusion Engineering and Design, 86 (2011), 684.  doi: 10.1016/j.fusengdes.2011.01.114.  Google Scholar

[4]

B. Jacob and H. Zwart, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces,, Operator Theory: Advances and Applications, (2012).  doi: 10.1007/978-3-0348-0399-1.  Google Scholar

[5]

Y. Le Gorrec, H. Zwart and B. M. Maschke, Dirac structures and boundary control systems associated with skew-symmetric differential operators,, SIAM J. of Control and Optimization, 44 (2005), 1864.  doi: 10.1137/040611677.  Google Scholar

[6]

A. Macchelli, Boundary energy shaping of linear distributed Port-Hamiltonian systems,, European Journal of Control, 19 (2013), 521.  doi: 10.1016/j.ejcon.2013.10.002.  Google Scholar

[7]

A. Macchelli, A. J. van der Schaft and C. Melchiorri, Port Hamiltonian formulation of infinite dimensional systems. I. Modeling,, Proc. 50th IEEE Conference on Decisions and Control (CDC04), (2004), 3762.  doi: 10.1109/CDC.2004.1429324.  Google Scholar

[8]

_________, Port Hamiltonian formulation of infinite dimensional systems. II. Boundary control by interconnection,, in 43rd IEEE Conference on Decisions and Control (CDC04), (2004).   Google Scholar

[9]

R. Ortega, A. J. van der Schaft, B. Maschke and G. Escobar, Interconnection and damping assignment: Passivity-based control of port-controlled Hamiltonian systems,, Automatica, 38 (2002), 585.  doi: 10.1016/S0005-1098(01)00278-3.  Google Scholar

[10]

R. Ortega and E. Garcia-Canseco, Interconnection and damping assignement passivit-based control: A survey,, European Journal of Control, 10 (2004), 432.  doi: 10.3166/ejc.10.432-450.  Google Scholar

[11]

M. Schöberl and A. Siuka, On casimir functionals for field fheories in port-hamiltonian description for control purposes,, in 50nd IEEE Conference on Decision and Control, (2011).   Google Scholar

[12]

G. E. Swaters, Introduction to Hamiltonian Fluid Dynamics and Stability Theory,, Chapman & Hal/CRC, (2000).   Google Scholar

[13]

A. J. van der Schaft and B. M. Maschke, Hamiltonian formulation of distributed parameter systems with boundary energy flow,, J. of Geometry and Physics, 42 (2002), 166.  doi: 10.1016/S0393-0440(01)00083-3.  Google Scholar

[14]

J. Villegas, H. Zwart, Y. Le Gorrec and B. M. Maschke, Stability and stabilization of a class of boundary control systems,, IEEE Transaction On Automatic Control, 54 (2009), 142.  doi: 10.1109/TAC.2008.2007176.  Google Scholar

[15]

J. A. Villegas, H. Zwart, Y. Le Gorrec, B. Maschke and A. J. van der Schaft, Stability and stabilization of a class of boundary control systems,, in Proc. 44th IEEE Conference on Decision and Control and European Control Conference ECC 2005 (Seville, (2005), 3850.  doi: 10.1109/CDC.2005.1582762.  Google Scholar

[16]

J. A. Villegas, Y. Le Gorrec, H. Zwart and B. Maschke, Boundary control for a class of dissipative differential operators including diffusion systems,, in Proc. 7th International Symposium on Mathematical Theory of Networks and Systems (Kyoto, (2006), 297.   Google Scholar

[17]

T. N. M. Vu, L. Lefèvre and B. Maschke, Port-hamiltonian formulation for systems of conservation laws: application to plasma dynamics in tokamak reactors,, in 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control, (2012).   Google Scholar

[18]

T. N. M. Vu, L. Lefèvre, R. Nouailletas and S. Brémond, Geometric discretization for a plasma control model,, in IFAC Joint conference: 5th Symposium on System Structure and Control, ().   Google Scholar

[19]

________, An ida-pbc approach for the control of 1d plasma profile in tokamaks,, in 52nd IEEE Conference on Decision and Control, (2013).   Google Scholar

[20]

T. N. M. Vu, R. Nouailletas, L. Lefèvre, S. Brémond and F. Felici, Ida-pbc control for the coupled plasma poloidal magnetic flux and heat radial diffusion equations in tokamaks,, in 19th World Congress of the International Federation of Automatic Control, (2014).   Google Scholar

[21]

J. Wesson, Tokamaks,, Third edition, (2004).   Google Scholar

[22]

E. Witrant, E. Joffrin, S. Brémond, G. Giruzzi, D. Mazon, O. Barana and P. Moreau, A control-oriented model of the current profile on tokamak plasma,, Plasma Physics and Controlled Fusion, 49 (2007), 1075.  doi: 10.1088/0741-3335/49/7/009.  Google Scholar

[1]

Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029

[2]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[3]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[4]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[5]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[6]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[7]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[8]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[9]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[10]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[11]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[12]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[13]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[14]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[15]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

[16]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[17]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[18]

Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021011

[19]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[20]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]