June  2015, 4(2): 205-220. doi: 10.3934/eect.2015.4.205

Finite rank distributed control for the resistive diffusion equation using damping assignment

1. 

LCIS Laboratoire de Conception et d'Intégration des Systèmes, Grenoble Alpes University, F-26902, France, France

Received  May 2014 Revised  October 2014 Published  May 2015

A first extension of the IDA-PBC control synthesis to infinite dimensional port Hamiltonian systems is investigated, using the same idea as for the finite dimensional case, that is transform the original model into a closed loop target Hamiltonian model using feedback control. To achieve this goal both finite rank distributed control and boundary control are used. The proposed class of considered port Hamiltonian distributed parameters systems is first defined. Then the matching equation is derived for this class before considering the particular case of damping assignment on the resistive diffusion example, for the radial diffusion of the poloidal magnetic flux in tokamak reactors.
Citation: Ngoc Minh Trang Vu, Laurent Lefèvre. Finite rank distributed control for the resistive diffusion equation using damping assignment. Evolution Equations and Control Theory, 2015, 4 (2) : 205-220. doi: 10.3934/eect.2015.4.205
References:
[1]

M. Becherif and E. Mendes, Stability and robustness of disturbed-port controlled hamiltonian systems with dissipation, in Proceedings of the 16th IFAC World Congress (Praha, Czech Republic), 2005.

[2]

J. Blum, Numerical Simulation and Optimal Control in Plasma Physics, Gauthier-Villars, Montrouge, 1989.

[3]

J. Bucalossi, A. Argouarch, V. Basiuk, et al., Feasibility study of an actively cooled tungsten divertor in tore supra for iter technology testing, Fusion Engineering and Design, 86 (2011), 684-688. doi: 10.1016/j.fusengdes.2011.01.114.

[4]

B. Jacob and H. Zwart, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces, Operator Theory: Advances and Applications, 223, Springer Verlag, Basel, 2012. doi: 10.1007/978-3-0348-0399-1.

[5]

Y. Le Gorrec, H. Zwart and B. M. Maschke, Dirac structures and boundary control systems associated with skew-symmetric differential operators, SIAM J. of Control and Optimization, 44 (2005), 1864-1892. doi: 10.1137/040611677.

[6]

A. Macchelli, Boundary energy shaping of linear distributed Port-Hamiltonian systems, European Journal of Control, 19 (2013), 521-528. doi: 10.1016/j.ejcon.2013.10.002.

[7]

A. Macchelli, A. J. van der Schaft and C. Melchiorri, Port Hamiltonian formulation of infinite dimensional systems. I. Modeling, Proc. 50th IEEE Conference on Decisions and Control (CDC04), Vol. 4, IEEE, 2004, 3762-3767. doi: 10.1109/CDC.2004.1429324.

[8]

_________, Port Hamiltonian formulation of infinite dimensional systems. II. Boundary control by interconnection, in 43rd IEEE Conference on Decisions and Control (CDC04), 2004.

[9]

R. Ortega, A. J. van der Schaft, B. Maschke and G. Escobar, Interconnection and damping assignment: Passivity-based control of port-controlled Hamiltonian systems, Automatica, 38 (2002), 585-596. doi: 10.1016/S0005-1098(01)00278-3.

[10]

R. Ortega and E. Garcia-Canseco, Interconnection and damping assignement passivit-based control: A survey, European Journal of Control, 10 (2004), 432-450. doi: 10.3166/ejc.10.432-450.

[11]

M. Schöberl and A. Siuka, On casimir functionals for field fheories in port-hamiltonian description for control purposes, in 50nd IEEE Conference on Decision and Control, Orlando, FL, USA, 2011.

[12]

G. E. Swaters, Introduction to Hamiltonian Fluid Dynamics and Stability Theory, Chapman & Hal/CRC, 2000.

[13]

A. J. van der Schaft and B. M. Maschke, Hamiltonian formulation of distributed parameter systems with boundary energy flow, J. of Geometry and Physics, 42 (2002), 166-194. doi: 10.1016/S0393-0440(01)00083-3.

[14]

J. Villegas, H. Zwart, Y. Le Gorrec and B. M. Maschke, Stability and stabilization of a class of boundary control systems, IEEE Transaction On Automatic Control, 54 (2009), 142-147. doi: 10.1109/TAC.2008.2007176.

[15]

J. A. Villegas, H. Zwart, Y. Le Gorrec, B. Maschke and A. J. van der Schaft, Stability and stabilization of a class of boundary control systems, in Proc. 44th IEEE Conference on Decision and Control and European Control Conference ECC 2005 (Seville, Spain), 2005, 3850-3855. doi: 10.1109/CDC.2005.1582762.

[16]

J. A. Villegas, Y. Le Gorrec, H. Zwart and B. Maschke, Boundary control for a class of dissipative differential operators including diffusion systems, in Proc. 7th International Symposium on Mathematical Theory of Networks and Systems (Kyoto, Japan), 2006, 297-304.

[17]

T. N. M. Vu, L. Lefèvre and B. Maschke, Port-hamiltonian formulation for systems of conservation laws: application to plasma dynamics in tokamak reactors, in 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control, Bertinoro, Italy, 2012.

[18]

T. N. M. Vu, L. Lefèvre, R. Nouailletas and S. Brémond, Geometric discretization for a plasma control model,, in IFAC Joint conference: 5th Symposium on System Structure and Control, (). 

[19]

________, An ida-pbc approach for the control of 1d plasma profile in tokamaks, in 52nd IEEE Conference on Decision and Control, Florence, Italy, 2013.

[20]

T. N. M. Vu, R. Nouailletas, L. Lefèvre, S. Brémond and F. Felici, Ida-pbc control for the coupled plasma poloidal magnetic flux and heat radial diffusion equations in tokamaks, in 19th World Congress of the International Federation of Automatic Control, Cape Town, South Africa, 2014.

[21]

J. Wesson, Tokamaks, Third edition, Oxford Science Publications, 2004.

[22]

E. Witrant, E. Joffrin, S. Brémond, G. Giruzzi, D. Mazon, O. Barana and P. Moreau, A control-oriented model of the current profile on tokamak plasma, Plasma Physics and Controlled Fusion, 49 (2007), 1075-1105. doi: 10.1088/0741-3335/49/7/009.

show all references

References:
[1]

M. Becherif and E. Mendes, Stability and robustness of disturbed-port controlled hamiltonian systems with dissipation, in Proceedings of the 16th IFAC World Congress (Praha, Czech Republic), 2005.

[2]

J. Blum, Numerical Simulation and Optimal Control in Plasma Physics, Gauthier-Villars, Montrouge, 1989.

[3]

J. Bucalossi, A. Argouarch, V. Basiuk, et al., Feasibility study of an actively cooled tungsten divertor in tore supra for iter technology testing, Fusion Engineering and Design, 86 (2011), 684-688. doi: 10.1016/j.fusengdes.2011.01.114.

[4]

B. Jacob and H. Zwart, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces, Operator Theory: Advances and Applications, 223, Springer Verlag, Basel, 2012. doi: 10.1007/978-3-0348-0399-1.

[5]

Y. Le Gorrec, H. Zwart and B. M. Maschke, Dirac structures and boundary control systems associated with skew-symmetric differential operators, SIAM J. of Control and Optimization, 44 (2005), 1864-1892. doi: 10.1137/040611677.

[6]

A. Macchelli, Boundary energy shaping of linear distributed Port-Hamiltonian systems, European Journal of Control, 19 (2013), 521-528. doi: 10.1016/j.ejcon.2013.10.002.

[7]

A. Macchelli, A. J. van der Schaft and C. Melchiorri, Port Hamiltonian formulation of infinite dimensional systems. I. Modeling, Proc. 50th IEEE Conference on Decisions and Control (CDC04), Vol. 4, IEEE, 2004, 3762-3767. doi: 10.1109/CDC.2004.1429324.

[8]

_________, Port Hamiltonian formulation of infinite dimensional systems. II. Boundary control by interconnection, in 43rd IEEE Conference on Decisions and Control (CDC04), 2004.

[9]

R. Ortega, A. J. van der Schaft, B. Maschke and G. Escobar, Interconnection and damping assignment: Passivity-based control of port-controlled Hamiltonian systems, Automatica, 38 (2002), 585-596. doi: 10.1016/S0005-1098(01)00278-3.

[10]

R. Ortega and E. Garcia-Canseco, Interconnection and damping assignement passivit-based control: A survey, European Journal of Control, 10 (2004), 432-450. doi: 10.3166/ejc.10.432-450.

[11]

M. Schöberl and A. Siuka, On casimir functionals for field fheories in port-hamiltonian description for control purposes, in 50nd IEEE Conference on Decision and Control, Orlando, FL, USA, 2011.

[12]

G. E. Swaters, Introduction to Hamiltonian Fluid Dynamics and Stability Theory, Chapman & Hal/CRC, 2000.

[13]

A. J. van der Schaft and B. M. Maschke, Hamiltonian formulation of distributed parameter systems with boundary energy flow, J. of Geometry and Physics, 42 (2002), 166-194. doi: 10.1016/S0393-0440(01)00083-3.

[14]

J. Villegas, H. Zwart, Y. Le Gorrec and B. M. Maschke, Stability and stabilization of a class of boundary control systems, IEEE Transaction On Automatic Control, 54 (2009), 142-147. doi: 10.1109/TAC.2008.2007176.

[15]

J. A. Villegas, H. Zwart, Y. Le Gorrec, B. Maschke and A. J. van der Schaft, Stability and stabilization of a class of boundary control systems, in Proc. 44th IEEE Conference on Decision and Control and European Control Conference ECC 2005 (Seville, Spain), 2005, 3850-3855. doi: 10.1109/CDC.2005.1582762.

[16]

J. A. Villegas, Y. Le Gorrec, H. Zwart and B. Maschke, Boundary control for a class of dissipative differential operators including diffusion systems, in Proc. 7th International Symposium on Mathematical Theory of Networks and Systems (Kyoto, Japan), 2006, 297-304.

[17]

T. N. M. Vu, L. Lefèvre and B. Maschke, Port-hamiltonian formulation for systems of conservation laws: application to plasma dynamics in tokamak reactors, in 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control, Bertinoro, Italy, 2012.

[18]

T. N. M. Vu, L. Lefèvre, R. Nouailletas and S. Brémond, Geometric discretization for a plasma control model,, in IFAC Joint conference: 5th Symposium on System Structure and Control, (). 

[19]

________, An ida-pbc approach for the control of 1d plasma profile in tokamaks, in 52nd IEEE Conference on Decision and Control, Florence, Italy, 2013.

[20]

T. N. M. Vu, R. Nouailletas, L. Lefèvre, S. Brémond and F. Felici, Ida-pbc control for the coupled plasma poloidal magnetic flux and heat radial diffusion equations in tokamaks, in 19th World Congress of the International Federation of Automatic Control, Cape Town, South Africa, 2014.

[21]

J. Wesson, Tokamaks, Third edition, Oxford Science Publications, 2004.

[22]

E. Witrant, E. Joffrin, S. Brémond, G. Giruzzi, D. Mazon, O. Barana and P. Moreau, A control-oriented model of the current profile on tokamak plasma, Plasma Physics and Controlled Fusion, 49 (2007), 1075-1105. doi: 10.1088/0741-3335/49/7/009.

[1]

Edward Hooton, Pavel Kravetc, Dmitrii Rachinskii, Qingwen Hu. Selective Pyragas control of Hamiltonian systems. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2019-2034. doi: 10.3934/dcdss.2019130

[2]

Evelyn Lunasin, Edriss S. Titi. Finite determining parameters feedback control for distributed nonlinear dissipative systems -a computational study. Evolution Equations and Control Theory, 2017, 6 (4) : 535-557. doi: 10.3934/eect.2017027

[3]

Getachew K. Befekadu, Eduardo L. Pasiliao. On the hierarchical optimal control of a chain of distributed systems. Journal of Dynamics and Games, 2015, 2 (2) : 187-199. doi: 10.3934/jdg.2015.2.187

[4]

Nguyen Hai Son. Solution stability to parametric distributed optimal control problems with finite unilateral constraints. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021047

[5]

Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations and Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207

[6]

Jochen Schmid. Stabilization of port-Hamiltonian systems with discontinuous energy densities. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2021063

[7]

Abderrahim Azouani, Edriss S. Titi. Feedback control of nonlinear dissipative systems by finite determining parameters - A reaction-diffusion paradigm. Evolution Equations and Control Theory, 2014, 3 (4) : 579-594. doi: 10.3934/eect.2014.3.579

[8]

Simone Göttlich, Patrick Schindler. Optimal inflow control of production systems with finite buffers. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 107-127. doi: 10.3934/dcdsb.2015.20.107

[9]

Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91-102. doi: 10.3934/era.2020006

[10]

Gildas Besançon, Didier Georges, Zohra Benayache. Towards nonlinear delay-based control for convection-like distributed systems: The example of water flow control in open channel systems. Networks and Heterogeneous Media, 2009, 4 (2) : 211-221. doi: 10.3934/nhm.2009.4.211

[11]

Nathanael Skrepek. Well-posedness of linear first order port-Hamiltonian Systems on multidimensional spatial domains. Evolution Equations and Control Theory, 2021, 10 (4) : 965-1006. doi: 10.3934/eect.2020098

[12]

Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control and Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029

[13]

Zhiyong Sun, Toshiharu Sugie. Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 297-318. doi: 10.3934/naco.2019020

[14]

Tomás Caraballo Garrido, Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero, Michael Zgurovsky. Preface to the special issue "Dynamics and control in distributed systems: Dedicated to the memory of Valery S. Melnik (1952-2007)". Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : i-v. doi: 10.3934/dcdsb.20193i

[15]

Rudy R. Negenborn, Peter-Jules van Overloop, Tamás Keviczky, Bart De Schutter. Distributed model predictive control of irrigation canals. Networks and Heterogeneous Media, 2009, 4 (2) : 359-380. doi: 10.3934/nhm.2009.4.359

[16]

Marc Puche, Timo Reis, Felix L. Schwenninger. Funnel control for boundary control systems. Evolution Equations and Control Theory, 2021, 10 (3) : 519-544. doi: 10.3934/eect.2020079

[17]

Qing Tang. On an optimal control problem of time-fractional advection-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 761-779. doi: 10.3934/dcdsb.2019266

[18]

Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1075-1090. doi: 10.3934/dcdsb.2021081

[19]

Dale McDonald. Sensitivity based trajectory following control damping methods. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 127-143. doi: 10.3934/naco.2013.3.127

[20]

Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]