March  2015, 4(1): 21-38. doi: 10.3934/eect.2015.4.21

Optimal energy decay rate of Rayleigh beam equation with only one boundary control force

1. 

Université Libanaise, EDST, Equipe EDP-AN, Hadath, Beyrouth, Lebanon

2. 

Université de Valenciennes et du Hainaut Cambrésis, LAMAV, FR CNRS 2956, Institut des Sciences et Techniques of Valenciennes, F-59313 - Valenciennes Cedex 9

3. 

Université Libanaise, Sciences 1 et EDST, Equipe EDP-AN, Hadath, Beyrouth, Lebanon

Received  July 2014 Revised  January 2015 Published  February 2015

We consider a clamped Rayleigh beam equation subject to only one boundary control force. Using an explicit approximation, we first give the asymptotic expansion of eigenvalues and eigenfunctions of the undamped underlying system. We next establish a polynomial energy decay rate for smooth initial data via an observability inequality of the corresponding undamped problem combined with a boundedness property of the transfer function of the associated undamped problem. Finally, by a frequency domain approach, using the real part of the asymptotic expansion of eigenvalues of the infinitesimal generator of the associated semigroup, we prove that the obtained energy decay rate is optimal.
Citation: Maya Bassam, Denis Mercier, Ali Wehbe. Optimal energy decay rate of Rayleigh beam equation with only one boundary control force. Evolution Equations and Control Theory, 2015, 4 (1) : 21-38. doi: 10.3934/eect.2015.4.21
References:
[1]

K. Ammari and M. Tucsnak, Stabilizaton of second order evolution equations by class of unbounded feedbacks, ESIAM, COCV., 6 (2001), 361-386. doi: 10.1051/cocv:2001114.

[2]

K. Ammari and M. Tucsnak, Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force, SIAM, J. Control Optim., 39 (2000), 1160-1181. doi: 10.1137/S0363012998349315.

[3]

C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., 8 (2008), 765-780. doi: 10.1007/s00028-008-0424-1.

[4]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478. doi: 10.1007/s00208-009-0439-0.

[5]

H. Brezis, Analyse Fonctionelle, Théorie et Applications, Masson, Paris, 1983.

[6]

G. Chen, M. C. Delfour, A. M. Krall and G. Payre, Modeling, stabilization and control of serially connected beams, SIAM J. Control Optim., 25 (1987), 526-546. doi: 10.1137/0325029.

[7]

G. Chen, S. G. Krantz, D. W. Ma, C. E. Wayne and H. H. West, The Euler-Bernoulli beam equation with boundary energy dissipation, in operator Methods for Optimal Control Problems (ed. Sung J. Lee), Lecture Notes in Pure and Appl. Math., 108, Dekker, New York, 1987, 67-96.

[8]

A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series, Math. Z., 41 (1936), 367-379. doi: 10.1007/BF01180426.

[9]

T. Kato, Perturbaton Theory for Linear Operators, Springer-Verlag, New-York, 1976.

[10]

J. S. Gibson, A note on stabilization of infinite-dimensional linear oscillators by compact linear feedback, SIAM J. Control Optim., 18 (1980), 311-316. doi: 10.1137/0318022.

[11]

B. Z. Guo, J. M. Wang and C. L. Zhou, On the dynamic behavior and stability of controlled connected Rayleigh beams under pointwise output feedback, ESAIM, Control, Optimisation and Calculus Variations, 14 (2008), 632-656. doi: 10.1051/cocv:2008001.

[12]

J. E. Lagnese, Boundary Stabilization of Thin Plates, SIAM Studies in Applied Mathematics, 10, SIAM, Philadelphia, PA, 1989. doi: 10.1137/1.9781611970821.

[13]

Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., 56 (2005), 630-644. doi: 10.1007/s00033-004-3073-4.

[14]

D. Mercier and V. Régnier, Exponential stability of a network of serially connected Euler-Bernoulli beams, International Journal of Control, 87 (2014), 1266-1281. doi: 10.1080/00207179.2013.874597.

[15]

Ö. Morgül, Dynamic boundary control of an Euler-Bernoulli beam, IEEE Trans. Automat. Control, 37 (1992), 639-642. doi: 10.1109/9.135504.

[16]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equation, Applied Mathematical Sciences, 44, Springer-Verlag, 1983. doi: 10.1007/978-1-4612-5561-1.

[17]

B. Rao, A Compact perturbation method for the boundary stabilization of the Rayleigh beam equation, Appl. Math. Optim., 33 (1996), 253-264. doi: 10.1007/BF01204704.

[18]

B. Rao, Uniform stabilisation of a hybrid system of elasticity, SIAM J. Control Optim., 33 (1995), 440-454. doi: 10.1137/S0363012992239879.

[19]

B. Rao, Optimal energy decay rate in a damped Rayleigh beam, Discrete Contin. Dynam. Systems, 4 (1998), 721-734. doi: 10.3934/dcds.1998.4.721.

[20]

D. L. Russell, On the mathematical models for the elastic beam with frequence-proportional damping, in Control and Estimation in Distributed Parameters Systems (ed. H. T. Bank), Frontiers in Applied Mathematics, Philadelphia, PA, 1992, 125-169. doi: 10.1137/1.9781611970982.ch4.

[21]

J. M. Wang, G. Q. Xu and S. P. Yung, Exponential stability of variable coefcients Rayleigh beams under boundary feedback controls: A Riesz basis approach, Systems and Control Letters, 51 (2004), 33-50. doi: 10.1016/S0167-6911(03)00205-6.

[22]

A. Wehbe, Optimal energy decay rate in the Rayleigh beam equation with boundary dynamical controls, Bull. Belg. Math. Soc., 13 (2006), 385-400.

show all references

References:
[1]

K. Ammari and M. Tucsnak, Stabilizaton of second order evolution equations by class of unbounded feedbacks, ESIAM, COCV., 6 (2001), 361-386. doi: 10.1051/cocv:2001114.

[2]

K. Ammari and M. Tucsnak, Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force, SIAM, J. Control Optim., 39 (2000), 1160-1181. doi: 10.1137/S0363012998349315.

[3]

C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., 8 (2008), 765-780. doi: 10.1007/s00028-008-0424-1.

[4]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478. doi: 10.1007/s00208-009-0439-0.

[5]

H. Brezis, Analyse Fonctionelle, Théorie et Applications, Masson, Paris, 1983.

[6]

G. Chen, M. C. Delfour, A. M. Krall and G. Payre, Modeling, stabilization and control of serially connected beams, SIAM J. Control Optim., 25 (1987), 526-546. doi: 10.1137/0325029.

[7]

G. Chen, S. G. Krantz, D. W. Ma, C. E. Wayne and H. H. West, The Euler-Bernoulli beam equation with boundary energy dissipation, in operator Methods for Optimal Control Problems (ed. Sung J. Lee), Lecture Notes in Pure and Appl. Math., 108, Dekker, New York, 1987, 67-96.

[8]

A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series, Math. Z., 41 (1936), 367-379. doi: 10.1007/BF01180426.

[9]

T. Kato, Perturbaton Theory for Linear Operators, Springer-Verlag, New-York, 1976.

[10]

J. S. Gibson, A note on stabilization of infinite-dimensional linear oscillators by compact linear feedback, SIAM J. Control Optim., 18 (1980), 311-316. doi: 10.1137/0318022.

[11]

B. Z. Guo, J. M. Wang and C. L. Zhou, On the dynamic behavior and stability of controlled connected Rayleigh beams under pointwise output feedback, ESAIM, Control, Optimisation and Calculus Variations, 14 (2008), 632-656. doi: 10.1051/cocv:2008001.

[12]

J. E. Lagnese, Boundary Stabilization of Thin Plates, SIAM Studies in Applied Mathematics, 10, SIAM, Philadelphia, PA, 1989. doi: 10.1137/1.9781611970821.

[13]

Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., 56 (2005), 630-644. doi: 10.1007/s00033-004-3073-4.

[14]

D. Mercier and V. Régnier, Exponential stability of a network of serially connected Euler-Bernoulli beams, International Journal of Control, 87 (2014), 1266-1281. doi: 10.1080/00207179.2013.874597.

[15]

Ö. Morgül, Dynamic boundary control of an Euler-Bernoulli beam, IEEE Trans. Automat. Control, 37 (1992), 639-642. doi: 10.1109/9.135504.

[16]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equation, Applied Mathematical Sciences, 44, Springer-Verlag, 1983. doi: 10.1007/978-1-4612-5561-1.

[17]

B. Rao, A Compact perturbation method for the boundary stabilization of the Rayleigh beam equation, Appl. Math. Optim., 33 (1996), 253-264. doi: 10.1007/BF01204704.

[18]

B. Rao, Uniform stabilisation of a hybrid system of elasticity, SIAM J. Control Optim., 33 (1995), 440-454. doi: 10.1137/S0363012992239879.

[19]

B. Rao, Optimal energy decay rate in a damped Rayleigh beam, Discrete Contin. Dynam. Systems, 4 (1998), 721-734. doi: 10.3934/dcds.1998.4.721.

[20]

D. L. Russell, On the mathematical models for the elastic beam with frequence-proportional damping, in Control and Estimation in Distributed Parameters Systems (ed. H. T. Bank), Frontiers in Applied Mathematics, Philadelphia, PA, 1992, 125-169. doi: 10.1137/1.9781611970982.ch4.

[21]

J. M. Wang, G. Q. Xu and S. P. Yung, Exponential stability of variable coefcients Rayleigh beams under boundary feedback controls: A Riesz basis approach, Systems and Control Letters, 51 (2004), 33-50. doi: 10.1016/S0167-6911(03)00205-6.

[22]

A. Wehbe, Optimal energy decay rate in the Rayleigh beam equation with boundary dynamical controls, Bull. Belg. Math. Soc., 13 (2006), 385-400.

[1]

Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721

[2]

Mohammad Akil, Ibtissam Issa, Ali Wehbe. Energy decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021059

[3]

Arnaud Münch, Ademir Fernando Pazoto. Boundary stabilization of a nonlinear shallow beam: theory and numerical approximation. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 197-219. doi: 10.3934/dcdsb.2008.10.197

[4]

Moez Daoulatli, Irena Lasiecka, Daniel Toundykov. Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 67-94. doi: 10.3934/dcdss.2009.2.67

[5]

Jitka Machalová, Horymír Netuka. Optimal control of system governed by the Gao beam equation. Conference Publications, 2015, 2015 (special) : 783-792. doi: 10.3934/proc.2015.0783

[6]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations and Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[7]

Ryo Ikehata, Shingo Kitazaki. Optimal energy decay rates for some wave equations with double damping terms. Evolution Equations and Control Theory, 2019, 8 (4) : 825-846. doi: 10.3934/eect.2019040

[8]

Kim Dang Phung. Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1057-1093. doi: 10.3934/dcds.2008.20.1057

[9]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations and Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[10]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[11]

Yizhao Qin, Yuxia Guo, Peng-Fei Yao. Energy decay and global smooth solutions for a free boundary fluid-nonlinear elastic structure interface model with boundary dissipation. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1555-1593. doi: 10.3934/dcds.2020086

[12]

Yanfang Li, Zhuangyi Liu, Yang Wang. Weak stability of a laminated beam. Mathematical Control and Related Fields, 2018, 8 (3&4) : 789-808. doi: 10.3934/mcrf.2018035

[13]

Yi Cheng, Zhihui Dong, Donal O' Regan. Exponential stability of axially moving Kirchhoff-beam systems with nonlinear boundary damping and disturbance. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021230

[14]

Kaïs Ammari, Mohamed Jellouli, Michel Mehrenberger. Feedback stabilization of a coupled string-beam system. Networks and Heterogeneous Media, 2009, 4 (1) : 19-34. doi: 10.3934/nhm.2009.4.19

[15]

Xiu-Fang Liu, Gen-Qi Xu. Exponential stabilization of Timoshenko beam with input and output delays. Mathematical Control and Related Fields, 2016, 6 (2) : 271-292. doi: 10.3934/mcrf.2016004

[16]

Abbes Benaissa, Abderrahmane Kasmi. Well-posedeness and energy decay of solutions to a bresse system with a boundary dissipation of fractional derivative type. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4361-4395. doi: 10.3934/dcdsb.2018168

[17]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao. Polynomial upper bounds for the instability of the nonlinear Schrödinger equation below the energy norm. Communications on Pure and Applied Analysis, 2003, 2 (1) : 33-50. doi: 10.3934/cpaa.2003.2.33

[18]

Ionuţ Munteanu. Exponential stabilization of the stochastic Burgers equation by boundary proportional feedback. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2173-2185. doi: 10.3934/dcds.2019091

[19]

Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100

[20]

Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (93)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]