\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Relating systems properties of the wave and the Schrödinger equation

Abstract Related Papers Cited by
  • In this article we show that systems properties of the systems governed by the second order differential equation $\frac{d^{2}w}{dt^{2}}=-A_{0}w$ and the first order differential equation $\frac{dz}{dt}=iA_{0}z$ are related. This can be used to show that, for instance, exact observability of the $N$-dimensional wave equation implies the similar property for the $N$-dimensional Schrödinger equation.
    Mathematics Subject Classification: Primary: 93C20, 93B07; Secondary: 35Q41.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. F. Curtain and H. J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Springer-Verlag, New York, 1995.doi: 10.1007/978-1-4612-4224-6.

    [2]

    V. Duindam, A. Macchelli, S. Stramigioli and H. Bruyninckx, Modelling and Control of Complex Physical Systems - The Port-Hamiltonian Approach, Springer-Verlag, 2009.doi: 10.1007/978-3-642-03196-0.

    [3]

    K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000.

    [4]

    V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Mathematics, 749, Springer-Verlag, Berlin, 1979.

    [5]

    D. J. Griffiths, Introduction to Quantum Mechanics, Pearson, Prentice Hall, 2005.

    [6]

    B. Jacob and H. Zwart, Linear port-Hamiltonian Systems on Infinite-Dimensional Spaces, Operator Theory: Advances and Applications, 223, Birkhäuser/Springer Basel AG, Basel, 2012.doi: 10.1007/978-3-0348-0399-1.

    [7]

    L. Miller, Controllability cost of conservative systems: Resolvent condition and transmutation, Journal of Functional Analysis, 218 (2005), 425-444.doi: 10.1016/j.jfa.2004.02.001.

    [8]

    M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser, Basel, 2009.doi: 10.1007/978-3-7643-8994-9.

    [9]

    A. J. van der Schaft and B. M. Maschke, Hamiltonian formulation of distributed-parameter systems with boundary energy flow, J. of Geometry and Physics, 42 (2002), 166-194.doi: 10.1016/S0393-0440(01)00083-3.

    [10]

    H. Zwart, Sufficient conditions for admissibility, Systems & Control Lett., 54 (2005), 973-979.doi: 10.1016/j.sysconle.2005.02.009.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(77) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return