June  2015, 4(2): 233-240. doi: 10.3934/eect.2015.4.233

Relating systems properties of the wave and the Schrödinger equation

1. 

Department of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands

2. 

FEMTO-ST AS2M, Université de Franche Comté/CNRS/ENSMM/UTBM, 24 rue Alain Savary, 25000 Besançon, France, France

Received  May 2014 Revised  September 2014 Published  May 2015

In this article we show that systems properties of the systems governed by the second order differential equation $\frac{d^{2}w}{dt^{2}}=-A_{0}w$ and the first order differential equation $\frac{dz}{dt}=iA_{0}z$ are related. This can be used to show that, for instance, exact observability of the $N$-dimensional wave equation implies the similar property for the $N$-dimensional Schrödinger equation.
Citation: Hans Zwart, Yann Le Gorrec, Bernhard Maschke. Relating systems properties of the wave and the Schrödinger equation. Evolution Equations & Control Theory, 2015, 4 (2) : 233-240. doi: 10.3934/eect.2015.4.233
References:
[1]

R. F. Curtain and H. J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory,, Springer-Verlag, (1995). doi: 10.1007/978-1-4612-4224-6. Google Scholar

[2]

V. Duindam, A. Macchelli, S. Stramigioli and H. Bruyninckx, Modelling and Control of Complex Physical Systems - The Port-Hamiltonian Approach,, Springer-Verlag, (2009). doi: 10.1007/978-3-642-03196-0. Google Scholar

[3]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Springer-Verlag, (2000). Google Scholar

[4]

V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier-Stokes Equations,, Lecture Notes in Mathematics, (1979). Google Scholar

[5]

D. J. Griffiths, Introduction to Quantum Mechanics,, Pearson, (2005). Google Scholar

[6]

B. Jacob and H. Zwart, Linear port-Hamiltonian Systems on Infinite-Dimensional Spaces,, Operator Theory: Advances and Applications, (2012). doi: 10.1007/978-3-0348-0399-1. Google Scholar

[7]

L. Miller, Controllability cost of conservative systems: Resolvent condition and transmutation,, Journal of Functional Analysis, 218 (2005), 425. doi: 10.1016/j.jfa.2004.02.001. Google Scholar

[8]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups,, Birkhäuser, (2009). doi: 10.1007/978-3-7643-8994-9. Google Scholar

[9]

A. J. van der Schaft and B. M. Maschke, Hamiltonian formulation of distributed-parameter systems with boundary energy flow,, J. of Geometry and Physics, 42 (2002), 166. doi: 10.1016/S0393-0440(01)00083-3. Google Scholar

[10]

H. Zwart, Sufficient conditions for admissibility,, Systems & Control Lett., 54 (2005), 973. doi: 10.1016/j.sysconle.2005.02.009. Google Scholar

show all references

References:
[1]

R. F. Curtain and H. J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory,, Springer-Verlag, (1995). doi: 10.1007/978-1-4612-4224-6. Google Scholar

[2]

V. Duindam, A. Macchelli, S. Stramigioli and H. Bruyninckx, Modelling and Control of Complex Physical Systems - The Port-Hamiltonian Approach,, Springer-Verlag, (2009). doi: 10.1007/978-3-642-03196-0. Google Scholar

[3]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Springer-Verlag, (2000). Google Scholar

[4]

V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier-Stokes Equations,, Lecture Notes in Mathematics, (1979). Google Scholar

[5]

D. J. Griffiths, Introduction to Quantum Mechanics,, Pearson, (2005). Google Scholar

[6]

B. Jacob and H. Zwart, Linear port-Hamiltonian Systems on Infinite-Dimensional Spaces,, Operator Theory: Advances and Applications, (2012). doi: 10.1007/978-3-0348-0399-1. Google Scholar

[7]

L. Miller, Controllability cost of conservative systems: Resolvent condition and transmutation,, Journal of Functional Analysis, 218 (2005), 425. doi: 10.1016/j.jfa.2004.02.001. Google Scholar

[8]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups,, Birkhäuser, (2009). doi: 10.1007/978-3-7643-8994-9. Google Scholar

[9]

A. J. van der Schaft and B. M. Maschke, Hamiltonian formulation of distributed-parameter systems with boundary energy flow,, J. of Geometry and Physics, 42 (2002), 166. doi: 10.1016/S0393-0440(01)00083-3. Google Scholar

[10]

H. Zwart, Sufficient conditions for admissibility,, Systems & Control Lett., 54 (2005), 973. doi: 10.1016/j.sysconle.2005.02.009. Google Scholar

[1]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[2]

Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure & Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261

[3]

Seckin Demirbas. Local well-posedness for 2-D Schrödinger equation on irrational tori and bounds on Sobolev norms. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1517-1530. doi: 10.3934/cpaa.2017072

[4]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[5]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for a periodic nonlinear Schrödinger equation in 1D and 2D. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 37-65. doi: 10.3934/dcds.2007.19.37

[6]

Zihua Guo, Yifei Wu. Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R} )$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 257-264. doi: 10.3934/dcds.2017010

[7]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1023-1041. doi: 10.3934/cpaa.2007.6.1023

[8]

Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093

[9]

Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations & Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15

[10]

Benjamin Dodson. Global well-posedness and scattering for the defocusing, cubic nonlinear Schrödinger equation when $n = 3$ via a linear-nonlinear decomposition. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1905-1926. doi: 10.3934/dcds.2013.33.1905

[11]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

[12]

Ademir Pastor. On three-wave interaction Schrödinger systems with quadratic nonlinearities: Global well-posedness and standing waves. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2217-2242. doi: 10.3934/cpaa.2019100

[13]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[14]

Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241

[15]

Nils Strunk. Well-posedness for the supercritical gKdV equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 527-542. doi: 10.3934/cpaa.2014.13.527

[16]

A. Alexandrou Himonas, Curtis Holliman. On well-posedness of the Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 469-488. doi: 10.3934/dcds.2011.31.469

[17]

Borys Alvarez-Samaniego, Pascal Azerad. Existence of travelling-wave solutions and local well-posedness of the Fowler equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 671-692. doi: 10.3934/dcdsb.2009.12.671

[18]

George Avalos. Concerning the well-posedness of a nonlinearly coupled semilinear wave and beam--like equation. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 265-288. doi: 10.3934/dcds.1997.3.265

[19]

Yonggeun Cho, Gyeongha Hwang, Soonsik Kwon, Sanghyuk Lee. Well-posedness and ill-posedness for the cubic fractional Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2863-2880. doi: 10.3934/dcds.2015.35.2863

[20]

Tristan Roy. Adapted linear-nonlinear decomposition and global well-posedness for solutions to the defocusing cubic wave equation on $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1307-1323. doi: 10.3934/dcds.2009.24.1307

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]