Citation: |
[1] |
R. F. Curtain and H. J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Springer-Verlag, New York, 1995.doi: 10.1007/978-1-4612-4224-6. |
[2] |
V. Duindam, A. Macchelli, S. Stramigioli and H. Bruyninckx, Modelling and Control of Complex Physical Systems - The Port-Hamiltonian Approach, Springer-Verlag, 2009.doi: 10.1007/978-3-642-03196-0. |
[3] |
K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000. |
[4] |
V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Mathematics, 749, Springer-Verlag, Berlin, 1979. |
[5] |
D. J. Griffiths, Introduction to Quantum Mechanics, Pearson, Prentice Hall, 2005. |
[6] |
B. Jacob and H. Zwart, Linear port-Hamiltonian Systems on Infinite-Dimensional Spaces, Operator Theory: Advances and Applications, 223, Birkhäuser/Springer Basel AG, Basel, 2012.doi: 10.1007/978-3-0348-0399-1. |
[7] |
L. Miller, Controllability cost of conservative systems: Resolvent condition and transmutation, Journal of Functional Analysis, 218 (2005), 425-444.doi: 10.1016/j.jfa.2004.02.001. |
[8] |
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser, Basel, 2009.doi: 10.1007/978-3-7643-8994-9. |
[9] |
A. J. van der Schaft and B. M. Maschke, Hamiltonian formulation of distributed-parameter systems with boundary energy flow, J. of Geometry and Physics, 42 (2002), 166-194.doi: 10.1016/S0393-0440(01)00083-3. |
[10] |
H. Zwart, Sufficient conditions for admissibility, Systems & Control Lett., 54 (2005), 973-979.doi: 10.1016/j.sysconle.2005.02.009. |