September  2015, 4(3): 241-263. doi: 10.3934/eect.2015.4.241

Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory

1. 

Ecole Nationale d'Ingénieurs de Bizerte, Université de Carthage, BP66, Campus Universitaire Menzel Abderrahman 7035, Tunisia

2. 

Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR CNRS 7348 - SP2MI, Boulevard Marie et Pierre Curie - Téléport 2, 86962 Chasseneuil Futuroscope Cedex

Received  February 2015 Revised  April 2015 Published  September 2015

We analyse the longterm properties of a $C_0-$semigroup describing the solutions to a nonlinear thermoelastic diffusion plate, recently derived by Aouadi [1], where the heat and diffusion flux depends on the past history of the temperature and the chemical potential gradients through memory kernels. First we prove the well-posedness of the initial-boundary-value problem using the $C_0-$semigroup theory of linear operators. Then we show, without rotational inertia, that the thermal and chemical potential coupling is strong enough to guarantee the quasi-stability. By showing that the system is gradient and asymptotically compact, the existence of a global attractor whose fractal dimension is finite is proved.
Citation: Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations & Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241
References:
[1]

M. Aouadi, On thermoelastic diffusion thin plates theory,, Appl. Math. Mech., 36 (2015), 619. doi: 10.1007/s10483-015-1930-7.

[2]

M. Aouadi, On uniform decay of a nonsimple thermoelastic bar with memory,, J. Math. Anal. Appl., 402 (2013), 745. doi: 10.1016/j.jmaa.2013.01.059.

[3]

M. Aouadi, B. Lazzari and R. Nibbi, A theory of thermoelasticity with diffusion under Green-Naghdi models,, ZAMM. Z. Angew. Math. Mech., 94 (2014), 837. doi: 10.1002/zamm.201300050.

[4]

A. Barbosa and T. Fu Ma, Long-time dynamics of an extensible plate equation with thermal memory,, J. Math. Anal. Appl., 416 (2014), 143. doi: 10.1016/j.jmaa.2014.02.042.

[5]

I. Chueshov and I. Lasiecka, Attractors for second order evolution equations with a nonlinear damping,, J. Dyn. Diff. Eq., 16 (2004), 469. doi: 10.1007/s10884-004-4289-x.

[6]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping,, Mem. Amer. Math. Soc., 195 (2008). doi: 10.1090/memo/0912.

[7]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations,, Springer Monographs in Mathematics, (2010). doi: 10.1007/978-0-387-87712-9.

[8]

M. Coti Zelati, F. Dell'Oro and V. Pata, Energy decay of type III linear thermoelastic plates with memory,, J. Math. Anal. Appl., 401 (2013), 357. doi: 10.1016/j.jmaa.2012.12.031.

[9]

T. Fastovska, Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermoelastic model with memory,, Commun. Pure Appl. Anal., 6 (2007), 83. doi: 10.3934/cpaa.2007.6.83.

[10]

T. Fastovska, Upper semicontinuous attractor for a 2D Mindlin-Timoshenko thermo-viscoelastic model with memory,, Nonlinear Analysis TMA, 71 (2009), 4833. doi: 10.1016/j.na.2009.03.059.

[11]

C. Giorgi, A. Marzocchi and V. Pata, Asymptotic behavior of a semilinear problem in heat conduction with memory,, NoDEA Nonlinear Diff. Eq. Appl., 5 (1998), 333. doi: 10.1007/s000300050049.

[12]

C. Giorgi and V. Pata, Stability of abstract linear thermoelastic systems with memory,, Math. Models Meth. Appl. Sci., 11 (2001), 627. doi: 10.1142/S0218202501001021.

[13]

M. Grasselli and V. Pata, Uniform attractors of nonautonomous systems with memory,, in Evolution Equations, (2002), 155.

[14]

M. Grasselli, J. E. Munoz Rivera and V. Pata, On the energy decay of the linear thermoelastic plate with memory,, J. Math. Anal. Appl., 309 (2005), 1. doi: 10.1016/j.jmaa.2004.10.071.

[15]

M. Grasselli and M. Squassina, Exponential stability and singular limit for a linear thermoelastic plate with memory effects,, Adv. Math. Sci. Appl., 16 (2006), 15.

[16]

M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds,, Arch. Ration. Mech. Anal., 31 (1968), 113. doi: 10.1007/BF00281373.

[17]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Mathematical Surveys and Monographs, (1988).

[18]

O. Ladyzhenskaya, Attractors for Semi-groups and Evolution Equations,, Cambridge University Press, (1991). doi: 10.1017/CBO9780511569418.

[19]

A. Miranville and S. Zelik, Handbook of Differential Equations, Evolutionary Equations, Vol. 4,, Chapter 3 (eds. C. M. Dafermos and M. Pokorny), (2008).

[20]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983). doi: 10.1007/978-1-4612-5561-1.

[21]

M. Potomkin, Asymptotic behavior of thermoviscoelastic Berger plate,, Commun. Pure Appl. Anal., 9 (2010), 161. doi: 10.3934/cpaa.2010.9.161.

[22]

M. Potomkin, A nonlinear transmission problem for a compound plate with thermoelastic part,, Math. Meth. Appl. Sci., 35 (2012), 530. doi: 10.1002/mma.1589.

[23]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Applied Mathematical Sciences, (1988). doi: 10.1007/978-1-4684-0313-8.

[24]

H. Wu, Long-time behavior for a nonlinear plate equation with thermal memory,, J. Math. Anal. Appl., 348 (2008), 650. doi: 10.1016/j.jmaa.2008.08.001.

[25]

S. Zheng, Nonlinear Evolution Equations,, Pitman Ser. Monogr. Surv. Pure Appl. Math., (2004). doi: 10.1201/9780203492222.

show all references

References:
[1]

M. Aouadi, On thermoelastic diffusion thin plates theory,, Appl. Math. Mech., 36 (2015), 619. doi: 10.1007/s10483-015-1930-7.

[2]

M. Aouadi, On uniform decay of a nonsimple thermoelastic bar with memory,, J. Math. Anal. Appl., 402 (2013), 745. doi: 10.1016/j.jmaa.2013.01.059.

[3]

M. Aouadi, B. Lazzari and R. Nibbi, A theory of thermoelasticity with diffusion under Green-Naghdi models,, ZAMM. Z. Angew. Math. Mech., 94 (2014), 837. doi: 10.1002/zamm.201300050.

[4]

A. Barbosa and T. Fu Ma, Long-time dynamics of an extensible plate equation with thermal memory,, J. Math. Anal. Appl., 416 (2014), 143. doi: 10.1016/j.jmaa.2014.02.042.

[5]

I. Chueshov and I. Lasiecka, Attractors for second order evolution equations with a nonlinear damping,, J. Dyn. Diff. Eq., 16 (2004), 469. doi: 10.1007/s10884-004-4289-x.

[6]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping,, Mem. Amer. Math. Soc., 195 (2008). doi: 10.1090/memo/0912.

[7]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations,, Springer Monographs in Mathematics, (2010). doi: 10.1007/978-0-387-87712-9.

[8]

M. Coti Zelati, F. Dell'Oro and V. Pata, Energy decay of type III linear thermoelastic plates with memory,, J. Math. Anal. Appl., 401 (2013), 357. doi: 10.1016/j.jmaa.2012.12.031.

[9]

T. Fastovska, Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermoelastic model with memory,, Commun. Pure Appl. Anal., 6 (2007), 83. doi: 10.3934/cpaa.2007.6.83.

[10]

T. Fastovska, Upper semicontinuous attractor for a 2D Mindlin-Timoshenko thermo-viscoelastic model with memory,, Nonlinear Analysis TMA, 71 (2009), 4833. doi: 10.1016/j.na.2009.03.059.

[11]

C. Giorgi, A. Marzocchi and V. Pata, Asymptotic behavior of a semilinear problem in heat conduction with memory,, NoDEA Nonlinear Diff. Eq. Appl., 5 (1998), 333. doi: 10.1007/s000300050049.

[12]

C. Giorgi and V. Pata, Stability of abstract linear thermoelastic systems with memory,, Math. Models Meth. Appl. Sci., 11 (2001), 627. doi: 10.1142/S0218202501001021.

[13]

M. Grasselli and V. Pata, Uniform attractors of nonautonomous systems with memory,, in Evolution Equations, (2002), 155.

[14]

M. Grasselli, J. E. Munoz Rivera and V. Pata, On the energy decay of the linear thermoelastic plate with memory,, J. Math. Anal. Appl., 309 (2005), 1. doi: 10.1016/j.jmaa.2004.10.071.

[15]

M. Grasselli and M. Squassina, Exponential stability and singular limit for a linear thermoelastic plate with memory effects,, Adv. Math. Sci. Appl., 16 (2006), 15.

[16]

M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds,, Arch. Ration. Mech. Anal., 31 (1968), 113. doi: 10.1007/BF00281373.

[17]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Mathematical Surveys and Monographs, (1988).

[18]

O. Ladyzhenskaya, Attractors for Semi-groups and Evolution Equations,, Cambridge University Press, (1991). doi: 10.1017/CBO9780511569418.

[19]

A. Miranville and S. Zelik, Handbook of Differential Equations, Evolutionary Equations, Vol. 4,, Chapter 3 (eds. C. M. Dafermos and M. Pokorny), (2008).

[20]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983). doi: 10.1007/978-1-4612-5561-1.

[21]

M. Potomkin, Asymptotic behavior of thermoviscoelastic Berger plate,, Commun. Pure Appl. Anal., 9 (2010), 161. doi: 10.3934/cpaa.2010.9.161.

[22]

M. Potomkin, A nonlinear transmission problem for a compound plate with thermoelastic part,, Math. Meth. Appl. Sci., 35 (2012), 530. doi: 10.1002/mma.1589.

[23]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Applied Mathematical Sciences, (1988). doi: 10.1007/978-1-4684-0313-8.

[24]

H. Wu, Long-time behavior for a nonlinear plate equation with thermal memory,, J. Math. Anal. Appl., 348 (2008), 650. doi: 10.1016/j.jmaa.2008.08.001.

[25]

S. Zheng, Nonlinear Evolution Equations,, Pitman Ser. Monogr. Surv. Pure Appl. Math., (2004). doi: 10.1201/9780203492222.

[1]

Irena Lasiecka, Mathias Wilke. Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5189-5202. doi: 10.3934/dcds.2013.33.5189

[2]

I. D. Chueshov, Iryna Ryzhkova. A global attractor for a fluid--plate interaction model. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1635-1656. doi: 10.3934/cpaa.2013.12.1635

[3]

Yuming Qin, Xinguang Yang, Zhiyong Ma. Global existence of solutions for the thermoelastic Bresse system. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1395-1406. doi: 10.3934/cpaa.2014.13.1395

[4]

Francesca Bucci, Igor Chueshov, Irena Lasiecka. Global attractor for a composite system of nonlinear wave and plate equations. Communications on Pure & Applied Analysis, 2007, 6 (1) : 113-140. doi: 10.3934/cpaa.2007.6.113

[5]

Azer Khanmamedov, Sema Simsek. Existence of the global attractor for the plate equation with nonlocal nonlinearity in $ \mathbb{R} ^{n}$. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 151-172. doi: 10.3934/dcdsb.2016.21.151

[6]

María Astudillo, Marcelo M. Cavalcanti. On the upper semicontinuity of the global attractor for a porous medium type problem with large diffusion. Evolution Equations & Control Theory, 2017, 6 (1) : 1-13. doi: 10.3934/eect.2017001

[7]

Yongqin Liu. Asymptotic behavior of solutions to a nonlinear plate equation with memory. Communications on Pure & Applied Analysis, 2017, 16 (2) : 533-556. doi: 10.3934/cpaa.2017027

[8]

Shikuan Mao, Yongqin Liu. Decay of solutions to generalized plate type equations with memory. Kinetic & Related Models, 2014, 7 (1) : 121-131. doi: 10.3934/krm.2014.7.121

[9]

Ning Ju. The global attractor for the solutions to the 3D viscous primitive equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 159-179. doi: 10.3934/dcds.2007.17.159

[10]

Tamara Fastovska. Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermoelastic model with memory. Communications on Pure & Applied Analysis, 2007, 6 (1) : 83-101. doi: 10.3934/cpaa.2007.6.83

[11]

Yongqin Liu, Shuichi Kawashima. Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1113-1139. doi: 10.3934/dcds.2011.29.1113

[12]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4155-4182. doi: 10.3934/dcds.2014.34.4155

[13]

B. Ambrosio, M. A. Aziz-Alaoui, V. L. E. Phan. Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3787-3797. doi: 10.3934/dcdsb.2018077

[14]

Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure & Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721

[15]

Moncef Aouadi, Taoufik Moulahi. The controllability of a thermoelastic plate problem revisited. Evolution Equations & Control Theory, 2018, 7 (1) : 1-31. doi: 10.3934/eect.2018001

[16]

Irina F. Sivergina, Michael P. Polis. About global null controllability of a quasi-static thermoelastic contact system. Conference Publications, 2005, 2005 (Special) : 816-823. doi: 10.3934/proc.2005.2005.816

[17]

Boling Guo, Guoli Zhou. Finite dimensionality of global attractor for the solutions to 3D viscous primitive equations of large-scale moist atmosphere. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4305-4327. doi: 10.3934/dcdsb.2018160

[18]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[19]

Hiroshi Matano, Ken-Ichi Nakamura. The global attractor of semilinear parabolic equations on $S^1$. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 1-24. doi: 10.3934/dcds.1997.3.1

[20]

Yuncheng You. Global attractor of the Gray-Scott equations. Communications on Pure & Applied Analysis, 2008, 7 (4) : 947-970. doi: 10.3934/cpaa.2008.7.947

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]