Citation: |
[1] |
G. Amendola, Free energies for incompressible viscoelastic fluids, Quart. Appl. Math., 68 (2010), 349-374.doi: 10.1090/S0033-569X-10-01185-3. |
[2] |
G. Amendola and M. Fabrizio, Thermal convection in a simple fluid with fading memory, J. Math. Anal. Appl., 366 (2010), 444-459.doi: 10.1016/j.jmaa.2009.11.043. |
[3] |
G. Amendola, M. Fabrizio and J. M. Golden, Thermodynamics of Materials with Memory: Theory and Applications, Springer, New York, 2012.doi: 10.1007/978-1-4614-1692-0. |
[4] |
G. Amendola, M. Fabrizio and A. Manes, On energy stability for a thermal convection in viscous fluids with memory, Palestine Journal of Mathematics, 2 (2013), 144-158. |
[5] |
C. M. Dafermos, Contraction semigroups and trend to equilibrium in continuous mechanics, in Applications of Methods of Functional Analysis to Problems in Mechanics, Lectures Notes in Mathematics, 503, Springer-Verlag, Berlin-Heidelberg, 1976, 295-306.doi: 10.1007/BFb0088765. |
[6] |
R. Datko, Extending a theorem of A. M. Lyapunov to Hilbert space, J. Math. Anal. Appl., 32 (1970), 610-616.doi: 10.1016/0022-247X(70)90283-0. |
[7] |
L. Deseri, M. Fabrizio and J. M. Golden, The concept of a minimal state in viscoelasticity: New free energies and applications to $PDE_S$, Arch. Rational Mech. Anal., 181 (2006), 43-96.doi: 10.1007/s00205-005-0406-1. |
[8] |
C. R. Doering, B. Eckhardt and J. Schumacher, Failure of energy stability in Oldroyd-B fluids at arbitrarily low Reynolds numbers, J. Non-Newtonian Fluid Mech., 135 (2006), 92-96.doi: 10.1016/j.jnnfm.2006.01.005. |
[9] |
M. Fabrizio, C. Giorgi and A. Morro, Free energies and dissipation properties for systems with memory, Arch. Rational Mech. Anal., 125 (1994), 341-373.doi: 10.1007/BF00375062. |
[10] |
M. Fabrizio and B. Lazzari, On asymptotic stability for linear viscoelastic fluids, Diff. Integral Equat., 6 (1993), 491-505. |
[11] |
A. Lozinski and R. G. Owens, An energy estimate for the Oldroyd-B model: Theory and applications, J. Non-Newtonian Fluid Mech., 112 (2003), 161-176.doi: 10.1016/S0377-0257(03)00096-X. |
[12] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Lectures Notes in Mathematics, 10, University of Maryland, 1974. |
[13] |
L. Preziosi and S. Rionero, Energy stability of steady shear flows of a viscoelastic fluid, Int. J. Eng. Sci., 27 (1989), 1167-1181.doi: 10.1016/0020-7225(89)90096-7. |
[14] |
M. Slemrod, An energy stability method for simple fluids, Arch. Rational Mech. Anal., 68 (1978), 1-18.doi: 10.1007/BF00276175. |
[15] |
B. Straughan, The Energy Method, Stability, and Non Linear Convection, $2^{nd}$ edition, Springer-Verlag, New York, 2004.doi: 10.1007/978-0-387-21740-6. |