September  2015, 4(3): 281-296. doi: 10.3934/eect.2015.4.281

Null controllability with constraints on the state for the 1-D Kuramoto-Sivashinsky equation

1. 

School of Mathematics and Statistics and Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024, China

Received  March 2015 Revised  June 2015 Published  September 2015

This paper is addressed to study the null controllability with constraints on the state for the Kuramoto-Sivashinsky equation. We first consider the linearized problem. Then, by Kakutani fixed point theorem, we show that the same result holds for the Kuramoto-Sivashinsky equation.
Citation: Peng Gao. Null controllability with constraints on the state for the 1-D Kuramoto-Sivashinsky equation. Evolution Equations & Control Theory, 2015, 4 (3) : 281-296. doi: 10.3934/eect.2015.4.281
References:
[1]

J. P. Aubin, L'analyse Non Linéaire et ses Motivations Économiques,, Masson, (1984). Google Scholar

[2]

O. Bodart, M. Gonzalez-Burgos and R. Pérez-García, Existence of insensitizing controls for a semilinear heat equation with a superlinear nonlinearity,, Comm. Partial Diff. Eq., 29 (2004), 1017. doi: 10.1081/PDE-200033749. Google Scholar

[3]

E. Cerpa and A. Mercado, Local exact controllability to the trajectories of the 1-D Kuramoto-Sivashinsky equation,, J. Differential Equations, 250 (2011), 2024. doi: 10.1016/j.jde.2010.12.015. Google Scholar

[4]

L. H. Chen and H. C. Chang, Nonlinear waves on liquid film surfaces-II. Bifurcation analyses of the long-wave equation,, Chem. Eng. Sci., 41 (1986), 2477. doi: 10.1016/0009-2509(86)80033-1. Google Scholar

[5]

M. Chen, Null controllability with constraints on the state for the linear Korteweg-de Vries equation,, Archiv der Mathematik., 104 (2015), 189. doi: 10.1007/s00013-015-0730-0. Google Scholar

[6]

P. Collet, J. P. Eckmann, H. Epstein and J. Stubbe, A global attracting set for the Kuramoto-Sivashinsky equation,, Comm. Math. Phys., 152 (1993), 203. doi: 10.1007/BF02097064. Google Scholar

[7]

C. Foias, B. Nicolaenko, G. R. Sell and R. Temam, Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension,, J. Math. Pures Appl., 67 (1988), 197. doi: 10.2307/2152750. Google Scholar

[8]

P. Gao, Insensitizing controls for the Cahn-Hilliard type equation,, Electron. J. Qual. Theory Differ. Equ, 35 (2014), 1. doi: 10.2307/2152750. Google Scholar

[9]

P. Gao, A new global Carleman estimate for the one-dimensional Kuramoto-Sivashinsky equation and applications to exact controllability to the trajectories and an inverse problem,, Nonlinear Anal., 117 (2015), 133. doi: 10.1016/j.na.2015.01.015. Google Scholar

[10]

A. Gonzalez and A. Castellanos, Nonlinear electrohydrodynamic waves on films falling down an inclined plane,, Phys. Rev. E., 53 (1996), 3573. doi: 10.1103/PhysRevE.53.3573. Google Scholar

[11]

J. Goodman, Stability of the Kuramoto-Sivashinsky and related systems,, Comm. Pure Appl. Math., 47 (1994), 293. doi: 10.1002/cpa.3160470304. Google Scholar

[12]

P. G. Meléndez, Lipschitz stability in an inverse problem for the main coefficient of a Kuramoto-Sivashinsky type equation,, J. Math. Anal. Appl., 408 (2013), 275. doi: 10.1016/j.jmaa.2013.05.050. Google Scholar

[13]

A. P. Hooper and R. Grimshaw, Nonlinear instability at the interface between two viscous fluids,, Phys. Fluids, 28 (1985), 37. doi: 10.1063/1.865160. Google Scholar

[14]

M. S. Jolly, I. G. Kevrekidis and E. S. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations,, Phys. D, 44 (1990), 38. doi: 10.1016/0167-2789(90)90046-R. Google Scholar

[15]

Y. Kuramoto and T. Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems,, Theor. Phys., 54 (1975), 687. Google Scholar

[16]

Y. Kuramoto, Diffusion-induced chaos in reaction systems,, Suppl. Prog. Theor. Phys, 64 (1978), 346. doi: 10.1143/PTPS.64.346. Google Scholar

[17]

Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium,, Prog. Theor. Phys., 55 (1976), 356. doi: 10.1143/PTP.55.356. Google Scholar

[18]

C. Louis-Rose, A null controllability problem with a finite number of constraints on the normal derivative for the semilinear heat equation,, Electron. J. Qual. Theory Differ. Equ., 95 (2012), 1. Google Scholar

[19]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations,, Springer-Verlag, (1971). Google Scholar

[20]

J. L. Lions, Sentinelles Pour Les Systèmes Distribués à Données Incomplètes,, Masson, (1992). Google Scholar

[21]

R. E. Laquey, S. M. Mahajan, P. H. Rutherford and W. M. Tang, Nonlinear saturation of the trapped-ion mode,, Phys. Rev. Lett., 34 (1975), 391. doi: 10.1103/PhysRevLett.34.391. Google Scholar

[22]

G. M. Mophou, Null controllability with constraints on the state for nonlinear heat equations,, Forum Math., 23 (2011), 285. doi: 10.1515/FORM.2011.010. Google Scholar

[23]

G. M. Mophou and O. Nakoulima, Null controllability with constraints on the state for the semilinear heat equation,, J. Optim. Theory Appl., 143 (2009), 539. doi: 10.1007/s10957-009-9568-6. Google Scholar

[24]

O. Nakoulima, Optimal control for distributed systems subject to null-controllability. Application to discriminating sentinels,, ESAIM Control Optim. Calc. Var., 13 (2007), 623. doi: 10.1051/cocv:2007038. Google Scholar

[25]

B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations,, Comm. Partial Diff. Eq., 14 (1989), 245. doi: 10.1080/03605308908820597. Google Scholar

[26]

S. Somdouda and G. M. Mophou, Null controllability with constraints on the state for the age-dependent linear population dynamics problem,, Adv. Differ. Equ. Control Process., 10 (2012), 113. Google Scholar

[27]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1987), 65. doi: 10.1007/BF01762360. Google Scholar

[28]

G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames-I Derivation of basic equations,, Acta Astronaut., 4 (1977), 1177. doi: 10.1016/0094-5765(77)90096-0. Google Scholar

[29]

R. Temam and X. Wang, Estimates on the lowest dimension of inertial manifolds for the Kuramoto-Sivashinsky equation in the general case,, Differential Integral Equations, 7 (1994), 1095. Google Scholar

[30]

Z. C. Zhou, Observability estimate and null controllability for one-dimensional fourth order parabolic equation,, Taiwanese J. Math., 16 (2012), 1991. Google Scholar

show all references

References:
[1]

J. P. Aubin, L'analyse Non Linéaire et ses Motivations Économiques,, Masson, (1984). Google Scholar

[2]

O. Bodart, M. Gonzalez-Burgos and R. Pérez-García, Existence of insensitizing controls for a semilinear heat equation with a superlinear nonlinearity,, Comm. Partial Diff. Eq., 29 (2004), 1017. doi: 10.1081/PDE-200033749. Google Scholar

[3]

E. Cerpa and A. Mercado, Local exact controllability to the trajectories of the 1-D Kuramoto-Sivashinsky equation,, J. Differential Equations, 250 (2011), 2024. doi: 10.1016/j.jde.2010.12.015. Google Scholar

[4]

L. H. Chen and H. C. Chang, Nonlinear waves on liquid film surfaces-II. Bifurcation analyses of the long-wave equation,, Chem. Eng. Sci., 41 (1986), 2477. doi: 10.1016/0009-2509(86)80033-1. Google Scholar

[5]

M. Chen, Null controllability with constraints on the state for the linear Korteweg-de Vries equation,, Archiv der Mathematik., 104 (2015), 189. doi: 10.1007/s00013-015-0730-0. Google Scholar

[6]

P. Collet, J. P. Eckmann, H. Epstein and J. Stubbe, A global attracting set for the Kuramoto-Sivashinsky equation,, Comm. Math. Phys., 152 (1993), 203. doi: 10.1007/BF02097064. Google Scholar

[7]

C. Foias, B. Nicolaenko, G. R. Sell and R. Temam, Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension,, J. Math. Pures Appl., 67 (1988), 197. doi: 10.2307/2152750. Google Scholar

[8]

P. Gao, Insensitizing controls for the Cahn-Hilliard type equation,, Electron. J. Qual. Theory Differ. Equ, 35 (2014), 1. doi: 10.2307/2152750. Google Scholar

[9]

P. Gao, A new global Carleman estimate for the one-dimensional Kuramoto-Sivashinsky equation and applications to exact controllability to the trajectories and an inverse problem,, Nonlinear Anal., 117 (2015), 133. doi: 10.1016/j.na.2015.01.015. Google Scholar

[10]

A. Gonzalez and A. Castellanos, Nonlinear electrohydrodynamic waves on films falling down an inclined plane,, Phys. Rev. E., 53 (1996), 3573. doi: 10.1103/PhysRevE.53.3573. Google Scholar

[11]

J. Goodman, Stability of the Kuramoto-Sivashinsky and related systems,, Comm. Pure Appl. Math., 47 (1994), 293. doi: 10.1002/cpa.3160470304. Google Scholar

[12]

P. G. Meléndez, Lipschitz stability in an inverse problem for the main coefficient of a Kuramoto-Sivashinsky type equation,, J. Math. Anal. Appl., 408 (2013), 275. doi: 10.1016/j.jmaa.2013.05.050. Google Scholar

[13]

A. P. Hooper and R. Grimshaw, Nonlinear instability at the interface between two viscous fluids,, Phys. Fluids, 28 (1985), 37. doi: 10.1063/1.865160. Google Scholar

[14]

M. S. Jolly, I. G. Kevrekidis and E. S. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations,, Phys. D, 44 (1990), 38. doi: 10.1016/0167-2789(90)90046-R. Google Scholar

[15]

Y. Kuramoto and T. Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems,, Theor. Phys., 54 (1975), 687. Google Scholar

[16]

Y. Kuramoto, Diffusion-induced chaos in reaction systems,, Suppl. Prog. Theor. Phys, 64 (1978), 346. doi: 10.1143/PTPS.64.346. Google Scholar

[17]

Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium,, Prog. Theor. Phys., 55 (1976), 356. doi: 10.1143/PTP.55.356. Google Scholar

[18]

C. Louis-Rose, A null controllability problem with a finite number of constraints on the normal derivative for the semilinear heat equation,, Electron. J. Qual. Theory Differ. Equ., 95 (2012), 1. Google Scholar

[19]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations,, Springer-Verlag, (1971). Google Scholar

[20]

J. L. Lions, Sentinelles Pour Les Systèmes Distribués à Données Incomplètes,, Masson, (1992). Google Scholar

[21]

R. E. Laquey, S. M. Mahajan, P. H. Rutherford and W. M. Tang, Nonlinear saturation of the trapped-ion mode,, Phys. Rev. Lett., 34 (1975), 391. doi: 10.1103/PhysRevLett.34.391. Google Scholar

[22]

G. M. Mophou, Null controllability with constraints on the state for nonlinear heat equations,, Forum Math., 23 (2011), 285. doi: 10.1515/FORM.2011.010. Google Scholar

[23]

G. M. Mophou and O. Nakoulima, Null controllability with constraints on the state for the semilinear heat equation,, J. Optim. Theory Appl., 143 (2009), 539. doi: 10.1007/s10957-009-9568-6. Google Scholar

[24]

O. Nakoulima, Optimal control for distributed systems subject to null-controllability. Application to discriminating sentinels,, ESAIM Control Optim. Calc. Var., 13 (2007), 623. doi: 10.1051/cocv:2007038. Google Scholar

[25]

B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations,, Comm. Partial Diff. Eq., 14 (1989), 245. doi: 10.1080/03605308908820597. Google Scholar

[26]

S. Somdouda and G. M. Mophou, Null controllability with constraints on the state for the age-dependent linear population dynamics problem,, Adv. Differ. Equ. Control Process., 10 (2012), 113. Google Scholar

[27]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1987), 65. doi: 10.1007/BF01762360. Google Scholar

[28]

G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames-I Derivation of basic equations,, Acta Astronaut., 4 (1977), 1177. doi: 10.1016/0094-5765(77)90096-0. Google Scholar

[29]

R. Temam and X. Wang, Estimates on the lowest dimension of inertial manifolds for the Kuramoto-Sivashinsky equation in the general case,, Differential Integral Equations, 7 (1994), 1095. Google Scholar

[30]

Z. C. Zhou, Observability estimate and null controllability for one-dimensional fourth order parabolic equation,, Taiwanese J. Math., 16 (2012), 1991. Google Scholar

[1]

Eduardo Cerpa. Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 91-102. doi: 10.3934/cpaa.2010.9.91

[2]

Peng Gao. Global exact controllability to the trajectories of the Kuramoto-Sivashinsky equation. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020002

[3]

Piotr Zgliczyński. Steady state bifurcations for the Kuramoto-Sivashinsky equation: A computer assisted proof. Journal of Computational Dynamics, 2015, 2 (1) : 95-142. doi: 10.3934/jcd.2015.2.95

[4]

Kiah Wah Ong. Dynamic transitions of generalized Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1225-1236. doi: 10.3934/dcdsb.2016.21.1225

[5]

Aslihan Demirkaya. The existence of a global attractor for a Kuramoto-Sivashinsky type equation in 2D. Conference Publications, 2009, 2009 (Special) : 198-207. doi: 10.3934/proc.2009.2009.198

[6]

Milena Stanislavova, Atanas Stefanov. Effective estimates of the higher Sobolev norms for the Kuramoto-Sivashinsky equation. Conference Publications, 2009, 2009 (Special) : 729-738. doi: 10.3934/proc.2009.2009.729

[7]

Jared C. Bronski, Razvan C. Fetecau, Thomas N. Gambill. A note on a non-local Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 701-707. doi: 10.3934/dcds.2007.18.701

[8]

D. Hilhorst, L. A. Peletier, A. I. Rotariu, G. Sivashinsky. Global attractor and inertial sets for a nonlocal Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 557-580. doi: 10.3934/dcds.2004.10.557

[9]

Yuncherl Choi, Jongmin Han, Chun-Hsiung Hsia. Bifurcation analysis of the damped Kuramoto-Sivashinsky equation with respect to the period. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1933-1957. doi: 10.3934/dcdsb.2015.20.1933

[10]

L. Dieci, M. S Jolly, Ricardo Rosa, E. S. Van Vleck. Error in approximation of Lyapunov exponents on inertial manifolds: The Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 555-580. doi: 10.3934/dcdsb.2008.9.555

[11]

Peng Gao. Averaging principle for stochastic Kuramoto-Sivashinsky equation with a fast oscillation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5649-5684. doi: 10.3934/dcds.2018247

[12]

Enrique Fernández-Cara, Arnaud Münch. Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods. Mathematical Control & Related Fields, 2012, 2 (3) : 217-246. doi: 10.3934/mcrf.2012.2.217

[13]

Fred C. Pinto. Nonlinear stability and dynamical properties for a Kuramoto-Sivashinsky equation in space dimension two. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 117-136. doi: 10.3934/dcds.1999.5.117

[14]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[15]

Sergei Avdonin, Jeff Park, Luz de Teresa. The Kalman condition for the boundary controllability of coupled 1-d wave equations. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020005

[16]

Larissa V. Fardigola. Controllability problems for the 1-d wave equations on a half-axis with Neumann boundary control. Mathematical Control & Related Fields, 2013, 3 (2) : 161-183. doi: 10.3934/mcrf.2013.3.161

[17]

Zhigang Ren, Shan Guo, Zhipeng Li, Zongze Wu. Adjoint-based parameter and state estimation in 1-D magnetohydrodynamic (MHD) flow system. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1579-1594. doi: 10.3934/jimo.2018022

[18]

Yaru Xie, Genqi Xu. Exponential stability of 1-d wave equation with the boundary time delay based on the interior control. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 557-579. doi: 10.3934/dcdss.2017028

[19]

Xueke Pu, Boling Guo, Jingjun Zhang. Global weak solutions to the 1-D fractional Landau-Lifshitz equation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 199-207. doi: 10.3934/dcdsb.2010.14.199

[20]

Serge Nicaise, Julie Valein. Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks. Networks & Heterogeneous Media, 2007, 2 (3) : 425-479. doi: 10.3934/nhm.2007.2.425

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]