September  2015, 4(3): 281-296. doi: 10.3934/eect.2015.4.281

Null controllability with constraints on the state for the 1-D Kuramoto-Sivashinsky equation

1. 

School of Mathematics and Statistics and Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024, China

Received  March 2015 Revised  June 2015 Published  September 2015

This paper is addressed to study the null controllability with constraints on the state for the Kuramoto-Sivashinsky equation. We first consider the linearized problem. Then, by Kakutani fixed point theorem, we show that the same result holds for the Kuramoto-Sivashinsky equation.
Citation: Peng Gao. Null controllability with constraints on the state for the 1-D Kuramoto-Sivashinsky equation. Evolution Equations and Control Theory, 2015, 4 (3) : 281-296. doi: 10.3934/eect.2015.4.281
References:
[1]

J. P. Aubin, L'analyse Non Linéaire et ses Motivations Économiques, Masson, Paris, 1984.

[2]

O. Bodart, M. Gonzalez-Burgos and R. Pérez-García, Existence of insensitizing controls for a semilinear heat equation with a superlinear nonlinearity, Comm. Partial Diff. Eq., 29 (2004), 1017-1050. doi: 10.1081/PDE-200033749.

[3]

E. Cerpa and A. Mercado, Local exact controllability to the trajectories of the 1-D Kuramoto-Sivashinsky equation, J. Differential Equations, 250 (2011), 2024-2044. doi: 10.1016/j.jde.2010.12.015.

[4]

L. H. Chen and H. C. Chang, Nonlinear waves on liquid film surfaces-II. Bifurcation analyses of the long-wave equation, Chem. Eng. Sci., 41 (1986), 2477-2486. doi: 10.1016/0009-2509(86)80033-1.

[5]

M. Chen, Null controllability with constraints on the state for the linear Korteweg-de Vries equation, Archiv der Mathematik., 104 (2015), 189-199. doi: 10.1007/s00013-015-0730-0.

[6]

P. Collet, J. P. Eckmann, H. Epstein and J. Stubbe, A global attracting set for the Kuramoto-Sivashinsky equation, Comm. Math. Phys., 152 (1993), 203-214. doi: 10.1007/BF02097064.

[7]

C. Foias, B. Nicolaenko, G. R. Sell and R. Temam, Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension, J. Math. Pures Appl., 67 (1988), 197-226. doi: 10.2307/2152750.

[8]

P. Gao, Insensitizing controls for the Cahn-Hilliard type equation, Electron. J. Qual. Theory Differ. Equ, 35 (2014), 1-22. doi: 10.2307/2152750.

[9]

P. Gao, A new global Carleman estimate for the one-dimensional Kuramoto-Sivashinsky equation and applications to exact controllability to the trajectories and an inverse problem, Nonlinear Anal., 117 (2015), 133-147. doi: 10.1016/j.na.2015.01.015.

[10]

A. Gonzalez and A. Castellanos, Nonlinear electrohydrodynamic waves on films falling down an inclined plane, Phys. Rev. E., 53 (1996), 3573-3578. doi: 10.1103/PhysRevE.53.3573.

[11]

J. Goodman, Stability of the Kuramoto-Sivashinsky and related systems, Comm. Pure Appl. Math., 47 (1994), 293-306. doi: 10.1002/cpa.3160470304.

[12]

P. G. Meléndez, Lipschitz stability in an inverse problem for the main coefficient of a Kuramoto-Sivashinsky type equation, J. Math. Anal. Appl., 408 (2013), 275-290. doi: 10.1016/j.jmaa.2013.05.050.

[13]

A. P. Hooper and R. Grimshaw, Nonlinear instability at the interface between two viscous fluids, Phys. Fluids, 28 (1985), 37-245. doi: 10.1063/1.865160.

[14]

M. S. Jolly, I. G. Kevrekidis and E. S. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations, Phys. D, 44 (1990), 38-60. doi: 10.1016/0167-2789(90)90046-R.

[15]

Y. Kuramoto and T. Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems, Theor. Phys., 54 (1975), 687-699.

[16]

Y. Kuramoto, Diffusion-induced chaos in reaction systems, Suppl. Prog. Theor. Phys, 64 (1978), 346-367. doi: 10.1143/PTPS.64.346.

[17]

Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55 (1976), 356-369. doi: 10.1143/PTP.55.356.

[18]

C. Louis-Rose, A null controllability problem with a finite number of constraints on the normal derivative for the semilinear heat equation, Electron. J. Qual. Theory Differ. Equ., 95 (2012), 1-34.

[19]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, New York, 1971.

[20]

J. L. Lions, Sentinelles Pour Les Systèmes Distribués à Données Incomplètes, Masson, Paris, 1992.

[21]

R. E. Laquey, S. M. Mahajan, P. H. Rutherford and W. M. Tang, Nonlinear saturation of the trapped-ion mode, Phys. Rev. Lett., 34 (1975), 391-394. doi: 10.1103/PhysRevLett.34.391.

[22]

G. M. Mophou, Null controllability with constraints on the state for nonlinear heat equations, Forum Math., 23 (2011), 285-319. doi: 10.1515/FORM.2011.010.

[23]

G. M. Mophou and O. Nakoulima, Null controllability with constraints on the state for the semilinear heat equation, J. Optim. Theory Appl., 143 (2009), 539-565. doi: 10.1007/s10957-009-9568-6.

[24]

O. Nakoulima, Optimal control for distributed systems subject to null-controllability. Application to discriminating sentinels, ESAIM Control Optim. Calc. Var., 13 (2007), 623-638. doi: 10.1051/cocv:2007038.

[25]

B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations, Comm. Partial Diff. Eq., 14 (1989), 245-297. doi: 10.1080/03605308908820597.

[26]

S. Somdouda and G. M. Mophou, Null controllability with constraints on the state for the age-dependent linear population dynamics problem, Adv. Differ. Equ. Control Process., 10 (2012), 113-130.

[27]

J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96. doi: 10.1007/BF01762360.

[28]

G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames-I Derivation of basic equations, Acta Astronaut., 4 (1977), 1177-1206. doi: 10.1016/0094-5765(77)90096-0.

[29]

R. Temam and X. Wang, Estimates on the lowest dimension of inertial manifolds for the Kuramoto-Sivashinsky equation in the general case, Differential Integral Equations, 7 (1994), 1095-1108.

[30]

Z. C. Zhou, Observability estimate and null controllability for one-dimensional fourth order parabolic equation, Taiwanese J. Math., 16 (2012), 1991-2017.

show all references

References:
[1]

J. P. Aubin, L'analyse Non Linéaire et ses Motivations Économiques, Masson, Paris, 1984.

[2]

O. Bodart, M. Gonzalez-Burgos and R. Pérez-García, Existence of insensitizing controls for a semilinear heat equation with a superlinear nonlinearity, Comm. Partial Diff. Eq., 29 (2004), 1017-1050. doi: 10.1081/PDE-200033749.

[3]

E. Cerpa and A. Mercado, Local exact controllability to the trajectories of the 1-D Kuramoto-Sivashinsky equation, J. Differential Equations, 250 (2011), 2024-2044. doi: 10.1016/j.jde.2010.12.015.

[4]

L. H. Chen and H. C. Chang, Nonlinear waves on liquid film surfaces-II. Bifurcation analyses of the long-wave equation, Chem. Eng. Sci., 41 (1986), 2477-2486. doi: 10.1016/0009-2509(86)80033-1.

[5]

M. Chen, Null controllability with constraints on the state for the linear Korteweg-de Vries equation, Archiv der Mathematik., 104 (2015), 189-199. doi: 10.1007/s00013-015-0730-0.

[6]

P. Collet, J. P. Eckmann, H. Epstein and J. Stubbe, A global attracting set for the Kuramoto-Sivashinsky equation, Comm. Math. Phys., 152 (1993), 203-214. doi: 10.1007/BF02097064.

[7]

C. Foias, B. Nicolaenko, G. R. Sell and R. Temam, Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension, J. Math. Pures Appl., 67 (1988), 197-226. doi: 10.2307/2152750.

[8]

P. Gao, Insensitizing controls for the Cahn-Hilliard type equation, Electron. J. Qual. Theory Differ. Equ, 35 (2014), 1-22. doi: 10.2307/2152750.

[9]

P. Gao, A new global Carleman estimate for the one-dimensional Kuramoto-Sivashinsky equation and applications to exact controllability to the trajectories and an inverse problem, Nonlinear Anal., 117 (2015), 133-147. doi: 10.1016/j.na.2015.01.015.

[10]

A. Gonzalez and A. Castellanos, Nonlinear electrohydrodynamic waves on films falling down an inclined plane, Phys. Rev. E., 53 (1996), 3573-3578. doi: 10.1103/PhysRevE.53.3573.

[11]

J. Goodman, Stability of the Kuramoto-Sivashinsky and related systems, Comm. Pure Appl. Math., 47 (1994), 293-306. doi: 10.1002/cpa.3160470304.

[12]

P. G. Meléndez, Lipschitz stability in an inverse problem for the main coefficient of a Kuramoto-Sivashinsky type equation, J. Math. Anal. Appl., 408 (2013), 275-290. doi: 10.1016/j.jmaa.2013.05.050.

[13]

A. P. Hooper and R. Grimshaw, Nonlinear instability at the interface between two viscous fluids, Phys. Fluids, 28 (1985), 37-245. doi: 10.1063/1.865160.

[14]

M. S. Jolly, I. G. Kevrekidis and E. S. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations, Phys. D, 44 (1990), 38-60. doi: 10.1016/0167-2789(90)90046-R.

[15]

Y. Kuramoto and T. Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems, Theor. Phys., 54 (1975), 687-699.

[16]

Y. Kuramoto, Diffusion-induced chaos in reaction systems, Suppl. Prog. Theor. Phys, 64 (1978), 346-367. doi: 10.1143/PTPS.64.346.

[17]

Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55 (1976), 356-369. doi: 10.1143/PTP.55.356.

[18]

C. Louis-Rose, A null controllability problem with a finite number of constraints on the normal derivative for the semilinear heat equation, Electron. J. Qual. Theory Differ. Equ., 95 (2012), 1-34.

[19]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, New York, 1971.

[20]

J. L. Lions, Sentinelles Pour Les Systèmes Distribués à Données Incomplètes, Masson, Paris, 1992.

[21]

R. E. Laquey, S. M. Mahajan, P. H. Rutherford and W. M. Tang, Nonlinear saturation of the trapped-ion mode, Phys. Rev. Lett., 34 (1975), 391-394. doi: 10.1103/PhysRevLett.34.391.

[22]

G. M. Mophou, Null controllability with constraints on the state for nonlinear heat equations, Forum Math., 23 (2011), 285-319. doi: 10.1515/FORM.2011.010.

[23]

G. M. Mophou and O. Nakoulima, Null controllability with constraints on the state for the semilinear heat equation, J. Optim. Theory Appl., 143 (2009), 539-565. doi: 10.1007/s10957-009-9568-6.

[24]

O. Nakoulima, Optimal control for distributed systems subject to null-controllability. Application to discriminating sentinels, ESAIM Control Optim. Calc. Var., 13 (2007), 623-638. doi: 10.1051/cocv:2007038.

[25]

B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations, Comm. Partial Diff. Eq., 14 (1989), 245-297. doi: 10.1080/03605308908820597.

[26]

S. Somdouda and G. M. Mophou, Null controllability with constraints on the state for the age-dependent linear population dynamics problem, Adv. Differ. Equ. Control Process., 10 (2012), 113-130.

[27]

J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96. doi: 10.1007/BF01762360.

[28]

G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames-I Derivation of basic equations, Acta Astronaut., 4 (1977), 1177-1206. doi: 10.1016/0094-5765(77)90096-0.

[29]

R. Temam and X. Wang, Estimates on the lowest dimension of inertial manifolds for the Kuramoto-Sivashinsky equation in the general case, Differential Integral Equations, 7 (1994), 1095-1108.

[30]

Z. C. Zhou, Observability estimate and null controllability for one-dimensional fourth order parabolic equation, Taiwanese J. Math., 16 (2012), 1991-2017.

[1]

Eduardo Cerpa. Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 91-102. doi: 10.3934/cpaa.2010.9.91

[2]

Peng Gao. Global exact controllability to the trajectories of the Kuramoto-Sivashinsky equation. Evolution Equations and Control Theory, 2020, 9 (1) : 181-191. doi: 10.3934/eect.2020002

[3]

Piotr Zgliczyński. Steady state bifurcations for the Kuramoto-Sivashinsky equation: A computer assisted proof. Journal of Computational Dynamics, 2015, 2 (1) : 95-142. doi: 10.3934/jcd.2015.2.95

[4]

Kiah Wah Ong. Dynamic transitions of generalized Kuramoto-Sivashinsky equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1225-1236. doi: 10.3934/dcdsb.2016.21.1225

[5]

Aslihan Demirkaya. The existence of a global attractor for a Kuramoto-Sivashinsky type equation in 2D. Conference Publications, 2009, 2009 (Special) : 198-207. doi: 10.3934/proc.2009.2009.198

[6]

Chaker Jammazi, Souhila Loucif. On the global controllability of the 1-D Boussinesq equation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1499-1523. doi: 10.3934/dcdss.2022096

[7]

Milena Stanislavova, Atanas Stefanov. Effective estimates of the higher Sobolev norms for the Kuramoto-Sivashinsky equation. Conference Publications, 2009, 2009 (Special) : 729-738. doi: 10.3934/proc.2009.2009.729

[8]

Jared C. Bronski, Razvan C. Fetecau, Thomas N. Gambill. A note on a non-local Kuramoto-Sivashinsky equation. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 701-707. doi: 10.3934/dcds.2007.18.701

[9]

Peng Gao. Averaging principle for stochastic Kuramoto-Sivashinsky equation with a fast oscillation. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5649-5684. doi: 10.3934/dcds.2018247

[10]

D. Hilhorst, L. A. Peletier, A. I. Rotariu, G. Sivashinsky. Global attractor and inertial sets for a nonlocal Kuramoto-Sivashinsky equation. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 557-580. doi: 10.3934/dcds.2004.10.557

[11]

Yuncherl Choi, Jongmin Han, Chun-Hsiung Hsia. Bifurcation analysis of the damped Kuramoto-Sivashinsky equation with respect to the period. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1933-1957. doi: 10.3934/dcdsb.2015.20.1933

[12]

L. Dieci, M. S Jolly, Ricardo Rosa, E. S. Van Vleck. Error in approximation of Lyapunov exponents on inertial manifolds: The Kuramoto-Sivashinsky equation. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 555-580. doi: 10.3934/dcdsb.2008.9.555

[13]

Shuting Chen, Zengji Du, Jiang Liu, Ke Wang. The dynamic properties of a generalized Kawahara equation with Kuramoto-Sivashinsky perturbation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1471-1496. doi: 10.3934/dcdsb.2021098

[14]

Enrique Fernández-Cara, Arnaud Münch. Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods. Mathematical Control and Related Fields, 2012, 2 (3) : 217-246. doi: 10.3934/mcrf.2012.2.217

[15]

Fred C. Pinto. Nonlinear stability and dynamical properties for a Kuramoto-Sivashinsky equation in space dimension two. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 117-136. doi: 10.3934/dcds.1999.5.117

[16]

David Massatt. On the well-posedness of the anisotropically-reduced two-dimensional Kuramoto-Sivashinsky Equation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021305

[17]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations and Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[18]

Sergei Avdonin, Jeff Park, Luz de Teresa. The Kalman condition for the boundary controllability of coupled 1-d wave equations. Evolution Equations and Control Theory, 2020, 9 (1) : 255-273. doi: 10.3934/eect.2020005

[19]

Abdallah Benabdallah, Mohsen Dlala. Rapid exponential stabilization by boundary state feedback for a class of coupled nonlinear ODE and $ 1-d $ heat diffusion equation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1085-1102. doi: 10.3934/dcdss.2021092

[20]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

2021 Impact Factor: 1.169

Metrics

  • PDF downloads (139)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]