September  2015, 4(3): 297-314. doi: 10.3934/eect.2015.4.297

An Ingham--Müntz type theorem and simultaneous observation problems

1. 

Département de mathématique, Université de Strasbourg, 7, rue René Descartes, 67084 Strasbourg Cedex, France

2. 

Institut Élie Cartan, Université de Lorraine, BP 70239, 54506 Vandœuvre-lès-Nancy Cedex, France

Received  April 2015 Revised  July 2015 Published  September 2015

We establish a theorem combining the estimates of Ingham and Müntz--Szász. Moreover, we allow complex exponents instead of purely imaginary exponents for the Ingham type part or purely real exponents for the Müntz--Szász part. A very special case of this theorem allows us to prove the simultaneous observability of some string--heat and beam--heat systems.
Citation: Vilmos Komornik, Gérald Tenenbaum. An Ingham--Müntz type theorem and simultaneous observation problems. Evolution Equations & Control Theory, 2015, 4 (3) : 297-314. doi: 10.3934/eect.2015.4.297
References:
[1]

P. Albano and D. Tataru, Carleman estimates and boundary observability for a coupled parabolic-hyperbolic system,, Electron. J. Differential Equations, (2000).   Google Scholar

[2]

C. Baiocchi, V. Komornik and P. Loreti, Ingham type theorems and applications to control theory,, Bol. Un. Mat. Ital. B, 2 (1999), 33.   Google Scholar

[3]

C. Baiocchi, V. Komornik and P. Loreti, Ingham, Beurling type theorems with weakened gap conditions,, Acta Math. Hungar., 97 (2002), 55.  doi: 10.1023/A:1020806811956.  Google Scholar

[4]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024.  doi: 10.1137/0330055.  Google Scholar

[5]

A. Beurling, Interpolation for an interval in $\mathbbR^1$,, in The Collected Works of Arne Beurling, (1989).   Google Scholar

[6]

J. A. Clarkson and P. Erdős, Approximation by polynomials,, Duke Math. J., 10 (1943), 5.  doi: 10.1215/S0012-7094-43-01002-6.  Google Scholar

[7]

J. Edwards, Ingham-type inequalities for complex frequencies and applications to control theory,, J. Math. Anal. Appl., 324 (2006), 941.  doi: 10.1016/j.jmaa.2005.12.074.  Google Scholar

[8]

H. O. Fattorini and D. L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations,, Quart. Appl. Math., 32 (1974), 45.   Google Scholar

[9]

K. D. Graham and D. L. Russell, Boundary value control of the wave equation in a spherical region,, SIAM J. Control, 13 (1975), 174.  doi: 10.1137/0313011.  Google Scholar

[10]

A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire,, J. Math. Pures Appl., 68 (1989), 457.   Google Scholar

[11]

A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series,, Math. Z., 41 (1936), 367.  doi: 10.1007/BF01180426.  Google Scholar

[12]

S. Jaffard and S. Micu, Estimates of the constants in generalized Ingham's inequality and applications to the control of the wave equation,, Asymptotic Analysis, 28 (2001), 181.   Google Scholar

[13]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method,, Masson, (1994).   Google Scholar

[14]

V. Komornik and P. Loreti, Fourier Series in Control Theory,, Springer-Verlag, (2005).   Google Scholar

[15]

I. Lasiecka and R. Triggiani, Regularity of hyperbolic equations under $L_2(0,T; L_2(\Gamma ))$ boundary terms,, Appl. Math. and Optimiz., 10 (1983), 275.  doi: 10.1007/BF01448390.  Google Scholar

[16]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories I,, Encyclopedia of Mathematics and Its Applications, (2000).   Google Scholar

[17]

J.-L. Lions, Exact controllability, stabilization, and perturbations for distributed systems,, SIAM Rev., 30 (1988), 1.  doi: 10.1137/1030001.  Google Scholar

[18]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués I-II,, Masson, (1988).   Google Scholar

[19]

Ch. H. Müntz, Über den Approximationssatz von Weierstrass,, in Mathematische Abhandlungen H. A. Schwarz gewidmet, (1914), 303.   Google Scholar

[20]

J. Rauch, Xu Zhang and E. Zuazua, Polynomial decay for a hyperbolic-parabolic coupled system,, J. Math. Pures Appl. (9), 84 (2005), 407.  doi: 10.1016/j.matpur.2004.09.006.  Google Scholar

[21]

D. L. Russell, Controllability and stabilization theory for linear partial differential equations. Recent progress and open questions,, SIAM Rev., 20 (1978), 639.  doi: 10.1137/1020095.  Google Scholar

[22]

T. I. Seidman, Boundary control and observation for the heat equation,, in Calculus of Variations and Control Theory (ed. D. L. Russell), (1976), 321.   Google Scholar

[23]

E. Sikolya, Simultaneous observability of networks of beams and strings,, Bol. Soc. Paran. Mat. (3), 21 (2003), 31.  doi: 10.5269/bspm.v21i1-2.7505.  Google Scholar

[24]

O. Szász, Über die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen,, Math. Ann., 77 (1916), 482.  doi: 10.1007/BF01456964.  Google Scholar

[25]

G. Tenenbaum and M. Tucsnak, Fast and strongly localized observation for the Schrödinger equation,, Trans. Amer. Math. Soc., 361 (2009), 951.  doi: 10.1090/S0002-9947-08-04584-4.  Google Scholar

[26]

Xu Zhang, E. Zuazua, Polynomial decay and control of a 1-d hyperbolic-parabolic coupled system,, J. Differential Equations, 204 (2004), 380.  doi: 10.1016/j.jde.2004.02.004.  Google Scholar

[27]

X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction,, Arch. Ration. Mech. Anal., 184 (2007), 49.  doi: 10.1007/s00205-006-0020-x.  Google Scholar

show all references

References:
[1]

P. Albano and D. Tataru, Carleman estimates and boundary observability for a coupled parabolic-hyperbolic system,, Electron. J. Differential Equations, (2000).   Google Scholar

[2]

C. Baiocchi, V. Komornik and P. Loreti, Ingham type theorems and applications to control theory,, Bol. Un. Mat. Ital. B, 2 (1999), 33.   Google Scholar

[3]

C. Baiocchi, V. Komornik and P. Loreti, Ingham, Beurling type theorems with weakened gap conditions,, Acta Math. Hungar., 97 (2002), 55.  doi: 10.1023/A:1020806811956.  Google Scholar

[4]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024.  doi: 10.1137/0330055.  Google Scholar

[5]

A. Beurling, Interpolation for an interval in $\mathbbR^1$,, in The Collected Works of Arne Beurling, (1989).   Google Scholar

[6]

J. A. Clarkson and P. Erdős, Approximation by polynomials,, Duke Math. J., 10 (1943), 5.  doi: 10.1215/S0012-7094-43-01002-6.  Google Scholar

[7]

J. Edwards, Ingham-type inequalities for complex frequencies and applications to control theory,, J. Math. Anal. Appl., 324 (2006), 941.  doi: 10.1016/j.jmaa.2005.12.074.  Google Scholar

[8]

H. O. Fattorini and D. L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations,, Quart. Appl. Math., 32 (1974), 45.   Google Scholar

[9]

K. D. Graham and D. L. Russell, Boundary value control of the wave equation in a spherical region,, SIAM J. Control, 13 (1975), 174.  doi: 10.1137/0313011.  Google Scholar

[10]

A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire,, J. Math. Pures Appl., 68 (1989), 457.   Google Scholar

[11]

A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series,, Math. Z., 41 (1936), 367.  doi: 10.1007/BF01180426.  Google Scholar

[12]

S. Jaffard and S. Micu, Estimates of the constants in generalized Ingham's inequality and applications to the control of the wave equation,, Asymptotic Analysis, 28 (2001), 181.   Google Scholar

[13]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method,, Masson, (1994).   Google Scholar

[14]

V. Komornik and P. Loreti, Fourier Series in Control Theory,, Springer-Verlag, (2005).   Google Scholar

[15]

I. Lasiecka and R. Triggiani, Regularity of hyperbolic equations under $L_2(0,T; L_2(\Gamma ))$ boundary terms,, Appl. Math. and Optimiz., 10 (1983), 275.  doi: 10.1007/BF01448390.  Google Scholar

[16]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories I,, Encyclopedia of Mathematics and Its Applications, (2000).   Google Scholar

[17]

J.-L. Lions, Exact controllability, stabilization, and perturbations for distributed systems,, SIAM Rev., 30 (1988), 1.  doi: 10.1137/1030001.  Google Scholar

[18]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués I-II,, Masson, (1988).   Google Scholar

[19]

Ch. H. Müntz, Über den Approximationssatz von Weierstrass,, in Mathematische Abhandlungen H. A. Schwarz gewidmet, (1914), 303.   Google Scholar

[20]

J. Rauch, Xu Zhang and E. Zuazua, Polynomial decay for a hyperbolic-parabolic coupled system,, J. Math. Pures Appl. (9), 84 (2005), 407.  doi: 10.1016/j.matpur.2004.09.006.  Google Scholar

[21]

D. L. Russell, Controllability and stabilization theory for linear partial differential equations. Recent progress and open questions,, SIAM Rev., 20 (1978), 639.  doi: 10.1137/1020095.  Google Scholar

[22]

T. I. Seidman, Boundary control and observation for the heat equation,, in Calculus of Variations and Control Theory (ed. D. L. Russell), (1976), 321.   Google Scholar

[23]

E. Sikolya, Simultaneous observability of networks of beams and strings,, Bol. Soc. Paran. Mat. (3), 21 (2003), 31.  doi: 10.5269/bspm.v21i1-2.7505.  Google Scholar

[24]

O. Szász, Über die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen,, Math. Ann., 77 (1916), 482.  doi: 10.1007/BF01456964.  Google Scholar

[25]

G. Tenenbaum and M. Tucsnak, Fast and strongly localized observation for the Schrödinger equation,, Trans. Amer. Math. Soc., 361 (2009), 951.  doi: 10.1090/S0002-9947-08-04584-4.  Google Scholar

[26]

Xu Zhang, E. Zuazua, Polynomial decay and control of a 1-d hyperbolic-parabolic coupled system,, J. Differential Equations, 204 (2004), 380.  doi: 10.1016/j.jde.2004.02.004.  Google Scholar

[27]

X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction,, Arch. Ration. Mech. Anal., 184 (2007), 49.  doi: 10.1007/s00205-006-0020-x.  Google Scholar

[1]

G. Gentile, V. Mastropietro. Convergence of Lindstedt series for the non linear wave equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 509-514. doi: 10.3934/cpaa.2004.3.509

[2]

Imen Benabbas, Djamel Eddine Teniou. Observability of wave equation with Ventcel dynamic condition. Evolution Equations & Control Theory, 2018, 7 (4) : 545-570. doi: 10.3934/eect.2018026

[3]

Abdelmouhcene Sengouga. Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints. Evolution Equations & Control Theory, 2020, 9 (1) : 1-25. doi: 10.3934/eect.2020014

[4]

Genggeng Huang. A Liouville theorem of degenerate elliptic equation and its application. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4549-4566. doi: 10.3934/dcds.2013.33.4549

[5]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[6]

Xiaohui Yu. Liouville type theorem for nonlinear elliptic equation with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4947-4966. doi: 10.3934/dcds.2014.34.4947

[7]

Pedro Teixeira. Dacorogna-Moser theorem on the Jacobian determinant equation with control of support. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4071-4089. doi: 10.3934/dcds.2017173

[8]

Ovidiu Savin. A Liouville theorem for solutions to the linearized Monge-Ampere equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 865-873. doi: 10.3934/dcds.2010.28.865

[9]

Stefano Pasquali. A Nekhoroshev type theorem for the nonlinear Klein-Gordon equation with potential. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3573-3594. doi: 10.3934/dcdsb.2017215

[10]

Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027

[11]

Keisuke Matsuya, Tetsuji Tokihiro. Existence and non-existence of global solutions for a discrete semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 209-220. doi: 10.3934/dcds.2011.31.209

[12]

Rabah Amir, Igor V. Evstigneev. On Zermelo's theorem. Journal of Dynamics & Games, 2017, 4 (3) : 191-194. doi: 10.3934/jdg.2017011

[13]

John Hubbard, Yulij Ilyashenko. A proof of Kolmogorov's theorem. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 367-385. doi: 10.3934/dcds.2004.10.367

[14]

George Avalos. Concerning the well-posedness of a nonlinearly coupled semilinear wave and beam--like equation. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 265-288. doi: 10.3934/dcds.1997.3.265

[15]

Ralf Kirsch, Sergej Rjasanow. The uniformly heated inelastic Boltzmann equation in Fourier space. Kinetic & Related Models, 2010, 3 (3) : 445-456. doi: 10.3934/krm.2010.3.445

[16]

Rui Liu. Some new results on explicit traveling wave solutions of $K(m, n)$ equation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 633-646. doi: 10.3934/dcdsb.2010.13.633

[17]

Yanan Li, Zhijian Yang, Fang Da. Robust attractors for a perturbed non-autonomous extensible beam equation with nonlinear nonlocal damping. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5975-6000. doi: 10.3934/dcds.2019261

[18]

Pao-Liu Chow. Asymptotic solutions of a nonlinear stochastic beam equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 735-749. doi: 10.3934/dcdsb.2006.6.735

[19]

Maurizio Garrione, Manuel Zamora. Periodic solutions of the Brillouin electron beam focusing equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 961-975. doi: 10.3934/cpaa.2014.13.961

[20]

Jitka Machalová, Horymír Netuka. Optimal control of system governed by the Gao beam equation. Conference Publications, 2015, 2015 (special) : 783-792. doi: 10.3934/proc.2015.0783

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]