• Previous Article
    Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition
  • EECT Home
  • This Issue
  • Next Article
    An Ingham--Müntz type theorem and simultaneous observation problems
September  2015, 4(3): 315-324. doi: 10.3934/eect.2015.4.315

Cauchy problem for a sixth order Cahn-Hilliard type equation with inertial term

1. 

Department of Mathematics, Jilin University, Changchun 130012, China

2. 

Department of Mathematics, and Key Laboratory of Symbolic Computation, and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012

Received  October 2014 Revised  March 2015 Published  September 2015

In this paper, we consider the Cauchy problem of a sixth order Cahn-Hilliard equation with the inertial term, \begin{eqnarray*} ku_{t t} + u_t - \Delta^3 u - \Delta(-a(u) \Delta u -\frac{a'(u)}2|\nabla u|^2 + f(u))=0. \end{eqnarray*} Based on Green's function method together with energy estimates, we get the global existence and optimal decay rate of solutions.
Citation: Aibo Liu, Changchun Liu. Cauchy problem for a sixth order Cahn-Hilliard type equation with inertial term. Evolution Equations & Control Theory, 2015, 4 (3) : 315-324. doi: 10.3934/eect.2015.4.315
References:
[1]

S. J. Deng, W. K. Wang and H. L. Zhao, Existence theory and $L^p$ estimates for the solution of nonlinear viscous wave equation,, Nonlinear Anal. Real World Appl., 11 (2010), 4404.  doi: 10.1016/j.nonrwa.2010.05.024.  Google Scholar

[2]

L. Duan, S. Q. Liu and H. J. Zhao, A note on the optimal temporal decay estimates of solutions to the Cahn-Hilliard equation,, J. Math. Anal. Appl., 372 (2010), 666.  doi: 10.1016/j.jmaa.2010.06.009.  Google Scholar

[3]

P. Galenko, Phase-field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system,, Phys. Lett. A, 287 (2001), 190.  doi: 10.1016/S0375-9601(01)00489-3.  Google Scholar

[4]

P. Galenko and D. Jou, Diffuse-interface model for rapid phase transformations in nonequilibrium systems,, Phys. Rev. E, 71 (2005).  doi: 10.1103/PhysRevE.71.046125.  Google Scholar

[5]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations,, Phys. Rev. E, 47 (1993), 4289.  doi: 10.1103/PhysRevE.47.4289.  Google Scholar

[6]

G. Gomppern and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. II. Monte Carlo simulations,, Phys. Rev. E, 47 (1993), 4301.  doi: 10.1103/PhysRevE.47.4301.  Google Scholar

[7]

G. Gompper and J. Goos, Fluctuating interfaces in microemulsion and sponge phases,, Phys. Rev. E, 50 (1994), 1325.  doi: 10.1103/PhysRevE.50.1325.  Google Scholar

[8]

D. Jou, J. Casas-Vazquez and G. Lebon, Extended irreversible thermodynamics,, Rep. Prog. Phys., 51 (1988), 1105.  doi: 10.1088/0034-4885/51/8/002.  Google Scholar

[9]

N. Y. Li and L. F. Mi, Pointwise estimates of solutions for the Cahn-Hilliard equation with inertial term in multi-dimensions,, J. Math. Anal. Appl., 397 (2013), 75.  doi: 10.1016/j.jmaa.2012.07.040.  Google Scholar

[10]

C. Liu and Z. Wang, Time periodic solutions for a sixth order nonlinear parabolic equation in two space dimensions,, Commun. Pure Appl. Anal., 13 (2014), 1087.  doi: 10.3934/cpaa.2014.13.1087.  Google Scholar

[11]

C. Liu and Z. Wang, Optimal control for a sixth order nonlinear parabolic equation,, Mathematical Methods in the Applied Sciences, 38 (2015), 247.  doi: 10.1002/mma.3063.  Google Scholar

[12]

C. Liu, Regularity of solutions for a sixth order nonlinear parabolic equation in two space dimensions,, Annales Polonici Mathematici, 107 (2013), 271.  doi: 10.4064/ap107-3-4.  Google Scholar

[13]

I. Pawłow and W. Zajăczkowski, A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures,, Commun. Pure Appl. Anal., 10 (2011), 1823.  doi: 10.3934/cpaa.2011.10.1823.  Google Scholar

[14]

G. Schimperna and I. Pawłow, On a class of Cahn-Hilliard models with nonlinear diffusion,, SIAM J. Math. Anal., 45 (2013), 31.  doi: 10.1137/110835608.  Google Scholar

[15]

W. K. Wang and W. J. Wang, The pointwise estimates of solutions for semilinear dissipative wave equation in multi-dimensions,, J. Math. Anal. Appl., 366 (2010), 226.  doi: 10.1016/j.jmaa.2009.12.013.  Google Scholar

[16]

W. K. Wang and Z. G. Wu, Optimal decay rate of solutions for Cahn-Hilliard equation with inertial term in multi-dimensions,, J. Math. Anal. Appl., 387 (2012), 349.  doi: 10.1016/j.jmaa.2011.09.016.  Google Scholar

show all references

References:
[1]

S. J. Deng, W. K. Wang and H. L. Zhao, Existence theory and $L^p$ estimates for the solution of nonlinear viscous wave equation,, Nonlinear Anal. Real World Appl., 11 (2010), 4404.  doi: 10.1016/j.nonrwa.2010.05.024.  Google Scholar

[2]

L. Duan, S. Q. Liu and H. J. Zhao, A note on the optimal temporal decay estimates of solutions to the Cahn-Hilliard equation,, J. Math. Anal. Appl., 372 (2010), 666.  doi: 10.1016/j.jmaa.2010.06.009.  Google Scholar

[3]

P. Galenko, Phase-field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system,, Phys. Lett. A, 287 (2001), 190.  doi: 10.1016/S0375-9601(01)00489-3.  Google Scholar

[4]

P. Galenko and D. Jou, Diffuse-interface model for rapid phase transformations in nonequilibrium systems,, Phys. Rev. E, 71 (2005).  doi: 10.1103/PhysRevE.71.046125.  Google Scholar

[5]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations,, Phys. Rev. E, 47 (1993), 4289.  doi: 10.1103/PhysRevE.47.4289.  Google Scholar

[6]

G. Gomppern and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. II. Monte Carlo simulations,, Phys. Rev. E, 47 (1993), 4301.  doi: 10.1103/PhysRevE.47.4301.  Google Scholar

[7]

G. Gompper and J. Goos, Fluctuating interfaces in microemulsion and sponge phases,, Phys. Rev. E, 50 (1994), 1325.  doi: 10.1103/PhysRevE.50.1325.  Google Scholar

[8]

D. Jou, J. Casas-Vazquez and G. Lebon, Extended irreversible thermodynamics,, Rep. Prog. Phys., 51 (1988), 1105.  doi: 10.1088/0034-4885/51/8/002.  Google Scholar

[9]

N. Y. Li and L. F. Mi, Pointwise estimates of solutions for the Cahn-Hilliard equation with inertial term in multi-dimensions,, J. Math. Anal. Appl., 397 (2013), 75.  doi: 10.1016/j.jmaa.2012.07.040.  Google Scholar

[10]

C. Liu and Z. Wang, Time periodic solutions for a sixth order nonlinear parabolic equation in two space dimensions,, Commun. Pure Appl. Anal., 13 (2014), 1087.  doi: 10.3934/cpaa.2014.13.1087.  Google Scholar

[11]

C. Liu and Z. Wang, Optimal control for a sixth order nonlinear parabolic equation,, Mathematical Methods in the Applied Sciences, 38 (2015), 247.  doi: 10.1002/mma.3063.  Google Scholar

[12]

C. Liu, Regularity of solutions for a sixth order nonlinear parabolic equation in two space dimensions,, Annales Polonici Mathematici, 107 (2013), 271.  doi: 10.4064/ap107-3-4.  Google Scholar

[13]

I. Pawłow and W. Zajăczkowski, A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures,, Commun. Pure Appl. Anal., 10 (2011), 1823.  doi: 10.3934/cpaa.2011.10.1823.  Google Scholar

[14]

G. Schimperna and I. Pawłow, On a class of Cahn-Hilliard models with nonlinear diffusion,, SIAM J. Math. Anal., 45 (2013), 31.  doi: 10.1137/110835608.  Google Scholar

[15]

W. K. Wang and W. J. Wang, The pointwise estimates of solutions for semilinear dissipative wave equation in multi-dimensions,, J. Math. Anal. Appl., 366 (2010), 226.  doi: 10.1016/j.jmaa.2009.12.013.  Google Scholar

[16]

W. K. Wang and Z. G. Wu, Optimal decay rate of solutions for Cahn-Hilliard equation with inertial term in multi-dimensions,, J. Math. Anal. Appl., 387 (2012), 349.  doi: 10.1016/j.jmaa.2011.09.016.  Google Scholar

[1]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[2]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[3]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[4]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[5]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[6]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[7]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[8]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[9]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[10]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[11]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[12]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[13]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[14]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[15]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[16]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[17]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[18]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[19]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[20]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]