• Previous Article
    Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition
  • EECT Home
  • This Issue
  • Next Article
    An Ingham--Müntz type theorem and simultaneous observation problems
September  2015, 4(3): 315-324. doi: 10.3934/eect.2015.4.315

Cauchy problem for a sixth order Cahn-Hilliard type equation with inertial term

1. 

Department of Mathematics, Jilin University, Changchun 130012, China

2. 

Department of Mathematics, and Key Laboratory of Symbolic Computation, and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012

Received  October 2014 Revised  March 2015 Published  September 2015

In this paper, we consider the Cauchy problem of a sixth order Cahn-Hilliard equation with the inertial term, \begin{eqnarray*} ku_{t t} + u_t - \Delta^3 u - \Delta(-a(u) \Delta u -\frac{a'(u)}2|\nabla u|^2 + f(u))=0. \end{eqnarray*} Based on Green's function method together with energy estimates, we get the global existence and optimal decay rate of solutions.
Citation: Aibo Liu, Changchun Liu. Cauchy problem for a sixth order Cahn-Hilliard type equation with inertial term. Evolution Equations and Control Theory, 2015, 4 (3) : 315-324. doi: 10.3934/eect.2015.4.315
References:
[1]

S. J. Deng, W. K. Wang and H. L. Zhao, Existence theory and $L^p$ estimates for the solution of nonlinear viscous wave equation, Nonlinear Anal. Real World Appl., 11 (2010), 4404-4414. doi: 10.1016/j.nonrwa.2010.05.024.

[2]

L. Duan, S. Q. Liu and H. J. Zhao, A note on the optimal temporal decay estimates of solutions to the Cahn-Hilliard equation, J. Math. Anal. Appl., 372 (2010), 666-678. doi: 10.1016/j.jmaa.2010.06.009.

[3]

P. Galenko, Phase-field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system, Phys. Lett. A, 287 (2001), 190-197. doi: 10.1016/S0375-9601(01)00489-3.

[4]

P. Galenko and D. Jou, Diffuse-interface model for rapid phase transformations in nonequilibrium systems, Phys. Rev. E, 71 (2005), 046125. doi: 10.1103/PhysRevE.71.046125.

[5]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations, Phys. Rev. E, 47 (1993), 4289-4300. doi: 10.1103/PhysRevE.47.4289.

[6]

G. Gomppern and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. II. Monte Carlo simulations, Phys. Rev. E, 47 (1993), 4301-4312. doi: 10.1103/PhysRevE.47.4301.

[7]

G. Gompper and J. Goos, Fluctuating interfaces in microemulsion and sponge phases, Phys. Rev. E, 50 (1994), 1325-1335. doi: 10.1103/PhysRevE.50.1325.

[8]

D. Jou, J. Casas-Vazquez and G. Lebon, Extended irreversible thermodynamics, Rep. Prog. Phys., 51 (1988), 1105-1179. doi: 10.1088/0034-4885/51/8/002.

[9]

N. Y. Li and L. F. Mi, Pointwise estimates of solutions for the Cahn-Hilliard equation with inertial term in multi-dimensions, J. Math. Anal. Appl., 397 (2013), 75-87. doi: 10.1016/j.jmaa.2012.07.040.

[10]

C. Liu and Z. Wang, Time periodic solutions for a sixth order nonlinear parabolic equation in two space dimensions, Commun. Pure Appl. Anal., 13 (2014), 1087-1104. doi: 10.3934/cpaa.2014.13.1087.

[11]

C. Liu and Z. Wang, Optimal control for a sixth order nonlinear parabolic equation, Mathematical Methods in the Applied Sciences, 38 (2015), 247-262. doi: 10.1002/mma.3063.

[12]

C. Liu, Regularity of solutions for a sixth order nonlinear parabolic equation in two space dimensions, Annales Polonici Mathematici, 107 (2013), 271-291. doi: 10.4064/ap107-3-4.

[13]

I. Pawłow and W. Zajăczkowski, A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures, Commun. Pure Appl. Anal., 10 (2011), 1823-1847. doi: 10.3934/cpaa.2011.10.1823.

[14]

G. Schimperna and I. Pawłow, On a class of Cahn-Hilliard models with nonlinear diffusion, SIAM J. Math. Anal., 45 (2013), 31-63. doi: 10.1137/110835608.

[15]

W. K. Wang and W. J. Wang, The pointwise estimates of solutions for semilinear dissipative wave equation in multi-dimensions, J. Math. Anal. Appl., 366 (2010), 226-241. doi: 10.1016/j.jmaa.2009.12.013.

[16]

W. K. Wang and Z. G. Wu, Optimal decay rate of solutions for Cahn-Hilliard equation with inertial term in multi-dimensions, J. Math. Anal. Appl., 387 (2012), 349-358. doi: 10.1016/j.jmaa.2011.09.016.

show all references

References:
[1]

S. J. Deng, W. K. Wang and H. L. Zhao, Existence theory and $L^p$ estimates for the solution of nonlinear viscous wave equation, Nonlinear Anal. Real World Appl., 11 (2010), 4404-4414. doi: 10.1016/j.nonrwa.2010.05.024.

[2]

L. Duan, S. Q. Liu and H. J. Zhao, A note on the optimal temporal decay estimates of solutions to the Cahn-Hilliard equation, J. Math. Anal. Appl., 372 (2010), 666-678. doi: 10.1016/j.jmaa.2010.06.009.

[3]

P. Galenko, Phase-field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system, Phys. Lett. A, 287 (2001), 190-197. doi: 10.1016/S0375-9601(01)00489-3.

[4]

P. Galenko and D. Jou, Diffuse-interface model for rapid phase transformations in nonequilibrium systems, Phys. Rev. E, 71 (2005), 046125. doi: 10.1103/PhysRevE.71.046125.

[5]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations, Phys. Rev. E, 47 (1993), 4289-4300. doi: 10.1103/PhysRevE.47.4289.

[6]

G. Gomppern and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. II. Monte Carlo simulations, Phys. Rev. E, 47 (1993), 4301-4312. doi: 10.1103/PhysRevE.47.4301.

[7]

G. Gompper and J. Goos, Fluctuating interfaces in microemulsion and sponge phases, Phys. Rev. E, 50 (1994), 1325-1335. doi: 10.1103/PhysRevE.50.1325.

[8]

D. Jou, J. Casas-Vazquez and G. Lebon, Extended irreversible thermodynamics, Rep. Prog. Phys., 51 (1988), 1105-1179. doi: 10.1088/0034-4885/51/8/002.

[9]

N. Y. Li and L. F. Mi, Pointwise estimates of solutions for the Cahn-Hilliard equation with inertial term in multi-dimensions, J. Math. Anal. Appl., 397 (2013), 75-87. doi: 10.1016/j.jmaa.2012.07.040.

[10]

C. Liu and Z. Wang, Time periodic solutions for a sixth order nonlinear parabolic equation in two space dimensions, Commun. Pure Appl. Anal., 13 (2014), 1087-1104. doi: 10.3934/cpaa.2014.13.1087.

[11]

C. Liu and Z. Wang, Optimal control for a sixth order nonlinear parabolic equation, Mathematical Methods in the Applied Sciences, 38 (2015), 247-262. doi: 10.1002/mma.3063.

[12]

C. Liu, Regularity of solutions for a sixth order nonlinear parabolic equation in two space dimensions, Annales Polonici Mathematici, 107 (2013), 271-291. doi: 10.4064/ap107-3-4.

[13]

I. Pawłow and W. Zajăczkowski, A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures, Commun. Pure Appl. Anal., 10 (2011), 1823-1847. doi: 10.3934/cpaa.2011.10.1823.

[14]

G. Schimperna and I. Pawłow, On a class of Cahn-Hilliard models with nonlinear diffusion, SIAM J. Math. Anal., 45 (2013), 31-63. doi: 10.1137/110835608.

[15]

W. K. Wang and W. J. Wang, The pointwise estimates of solutions for semilinear dissipative wave equation in multi-dimensions, J. Math. Anal. Appl., 366 (2010), 226-241. doi: 10.1016/j.jmaa.2009.12.013.

[16]

W. K. Wang and Z. G. Wu, Optimal decay rate of solutions for Cahn-Hilliard equation with inertial term in multi-dimensions, J. Math. Anal. Appl., 387 (2012), 349-358. doi: 10.1016/j.jmaa.2011.09.016.

[1]

Irena Pawłow, Wojciech M. Zajączkowski. On a class of sixth order viscous Cahn-Hilliard type equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 517-546. doi: 10.3934/dcdss.2013.6.517

[2]

Irena Pawłow, Wojciech M. Zajączkowski. A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1823-1847. doi: 10.3934/cpaa.2011.10.1823

[3]

Irena Pawłow, Wojciech M. Zajączkowski. The global solvability of a sixth order Cahn-Hilliard type equation via the Bäcklund transformation. Communications on Pure and Applied Analysis, 2014, 13 (2) : 859-880. doi: 10.3934/cpaa.2014.13.859

[4]

Cecilia Cavaterra, Maurizio Grasselli, Hao Wu. Non-isothermal viscous Cahn-Hilliard equation with inertial term and dynamic boundary conditions. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1855-1890. doi: 10.3934/cpaa.2014.13.1855

[5]

Maurizio Grasselli, Nicolas Lecoq, Morgan Pierre. A long-time stable fully discrete approximation of the Cahn-Hilliard equation with inertial term. Conference Publications, 2011, 2011 (Special) : 543-552. doi: 10.3934/proc.2011.2011.543

[6]

Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630

[7]

Nguyen Huy Tuan. Existence and limit problem for fractional fourth order subdiffusion equation and Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4551-4574. doi: 10.3934/dcdss.2021113

[8]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[9]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[10]

Anna Kostianko, Sergey Zelik. Inertial manifolds for the 3D Cahn-Hilliard equations with periodic boundary conditions. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2069-2094. doi: 10.3934/cpaa.2015.14.2069

[11]

Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations and Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517

[12]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations and Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[13]

Ahmad Makki, Alain Miranville. Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 759-775. doi: 10.3934/dcdss.2016027

[14]

Makoto Okumura, Takeshi Fukao, Daisuke Furihata, Shuji Yoshikawa. A second-order accurate structure-preserving scheme for the Cahn-Hilliard equation with a dynamic boundary condition. Communications on Pure and Applied Analysis, 2022, 21 (2) : 355-392. doi: 10.3934/cpaa.2021181

[15]

L. Chupin. Existence result for a mixture of non Newtonian flows with stress diffusion using the Cahn-Hilliard formulation. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 45-68. doi: 10.3934/dcdsb.2003.3.45

[16]

Andrea Signori. Optimal treatment for a phase field system of Cahn-Hilliard type modeling tumor growth by asymptotic scheme. Mathematical Control and Related Fields, 2020, 10 (2) : 305-331. doi: 10.3934/mcrf.2019040

[17]

Ciprian G. Gal, Maurizio Grasselli. Longtime behavior of nonlocal Cahn-Hilliard equations. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 145-179. doi: 10.3934/dcds.2014.34.145

[18]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[19]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[20]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (91)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]