\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Cauchy problem for a sixth order Cahn-Hilliard type equation with inertial term

Abstract Related Papers Cited by
  • In this paper, we consider the Cauchy problem of a sixth order Cahn-Hilliard equation with the inertial term, \begin{eqnarray*} ku_{t t} + u_t - \Delta^3 u - \Delta(-a(u) \Delta u -\frac{a'(u)}2|\nabla u|^2 + f(u))=0. \end{eqnarray*} Based on Green's function method together with energy estimates, we get the global existence and optimal decay rate of solutions.
    Mathematics Subject Classification: Primary: 35L30, 35L77; Secondary: 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. J. Deng, W. K. Wang and H. L. Zhao, Existence theory and $L^p$ estimates for the solution of nonlinear viscous wave equation, Nonlinear Anal. Real World Appl., 11 (2010), 4404-4414.doi: 10.1016/j.nonrwa.2010.05.024.

    [2]

    L. Duan, S. Q. Liu and H. J. Zhao, A note on the optimal temporal decay estimates of solutions to the Cahn-Hilliard equation, J. Math. Anal. Appl., 372 (2010), 666-678.doi: 10.1016/j.jmaa.2010.06.009.

    [3]

    P. Galenko, Phase-field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system, Phys. Lett. A, 287 (2001), 190-197.doi: 10.1016/S0375-9601(01)00489-3.

    [4]

    P. Galenko and D. Jou, Diffuse-interface model for rapid phase transformations in nonequilibrium systems, Phys. Rev. E, 71 (2005), 046125.doi: 10.1103/PhysRevE.71.046125.

    [5]

    G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations, Phys. Rev. E, 47 (1993), 4289-4300.doi: 10.1103/PhysRevE.47.4289.

    [6]

    G. Gomppern and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. II. Monte Carlo simulations, Phys. Rev. E, 47 (1993), 4301-4312.doi: 10.1103/PhysRevE.47.4301.

    [7]

    G. Gompper and J. Goos, Fluctuating interfaces in microemulsion and sponge phases, Phys. Rev. E, 50 (1994), 1325-1335.doi: 10.1103/PhysRevE.50.1325.

    [8]

    D. Jou, J. Casas-Vazquez and G. Lebon, Extended irreversible thermodynamics, Rep. Prog. Phys., 51 (1988), 1105-1179.doi: 10.1088/0034-4885/51/8/002.

    [9]

    N. Y. Li and L. F. Mi, Pointwise estimates of solutions for the Cahn-Hilliard equation with inertial term in multi-dimensions, J. Math. Anal. Appl., 397 (2013), 75-87.doi: 10.1016/j.jmaa.2012.07.040.

    [10]

    C. Liu and Z. Wang, Time periodic solutions for a sixth order nonlinear parabolic equation in two space dimensions, Commun. Pure Appl. Anal., 13 (2014), 1087-1104.doi: 10.3934/cpaa.2014.13.1087.

    [11]

    C. Liu and Z. Wang, Optimal control for a sixth order nonlinear parabolic equation, Mathematical Methods in the Applied Sciences, 38 (2015), 247-262.doi: 10.1002/mma.3063.

    [12]

    C. Liu, Regularity of solutions for a sixth order nonlinear parabolic equation in two space dimensions, Annales Polonici Mathematici, 107 (2013), 271-291.doi: 10.4064/ap107-3-4.

    [13]

    I. Pawłow and W. Zajăczkowski, A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures, Commun. Pure Appl. Anal., 10 (2011), 1823-1847.doi: 10.3934/cpaa.2011.10.1823.

    [14]

    G. Schimperna and I. Pawłow, On a class of Cahn-Hilliard models with nonlinear diffusion, SIAM J. Math. Anal., 45 (2013), 31-63.doi: 10.1137/110835608.

    [15]

    W. K. Wang and W. J. Wang, The pointwise estimates of solutions for semilinear dissipative wave equation in multi-dimensions, J. Math. Anal. Appl., 366 (2010), 226-241.doi: 10.1016/j.jmaa.2009.12.013.

    [16]

    W. K. Wang and Z. G. Wu, Optimal decay rate of solutions for Cahn-Hilliard equation with inertial term in multi-dimensions, J. Math. Anal. Appl., 387 (2012), 349-358.doi: 10.1016/j.jmaa.2011.09.016.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(103) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return