September  2015, 4(3): 355-372. doi: 10.3934/eect.2015.4.355

A note on global well-posedness and blow-up of some semilinear evolution equations

1. 

University Tunis El Manar, Faculty of Sciences of Tunis, Department of Mathematics, 2092, Tunis

Received  January 2015 Revised  July 2015 Published  September 2015

We investigate the initial value problems for some semilinear wave, heat and Schrödinger equations in two space dimensions, with exponential nonlinearities. Using the potential well method based on the concepts of invariant sets, we prove either global well-posedness or finite time blow-up.
Citation: Tarek Saanouni. A note on global well-posedness and blow-up of some semilinear evolution equations. Evolution Equations & Control Theory, 2015, 4 (3) : 355-372. doi: 10.3934/eect.2015.4.355
References:
[1]

S. Adachi and K. Tanaka, Trudinger type inequalities in $\mathbbR^N$ and their best exponent,, Proc. Amer. Math. Society., 128 (1999), 2051. doi: 10.1090/S0002-9939-99-05180-1.

[2]

D. R. Adams, Sobolev Spaces,, Academic Press, (1975).

[3]

A. Atallah Baraket, Local existence and estimations for a semilinear wave equation in two dimension space,, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 7 (2004), 1.

[4]

H. Bahouri, S. Ibrahim and G. Perleman, Scattering for the critical 2-$D$ NLS with exponential growth,, Diff. Int. Eq., 27 (2014), 233.

[5]

T. Cazenave, An Introduction to Nonlinear Schrödinger Equations,, Textos de Metodos Matematicos, (1996).

[6]

J. Colliander, S. Ibrahim, M. Majdoub and N. Masmoudi, Energy critical NLS in two space dimensions,, J. Hyperbolic Differ. Equ., 6 (2009), 549. doi: 10.1142/S0219891609001927.

[7]

J. Ginibre and G. Velo, On a class of a nonlinear Schrödinger equations. II: Scattering theory, general case,, J. Funct. Anal., 32 (1979), 33. doi: 10.1016/0022-1236(79)90077-6.

[8]

J. Ginibre and G. Velo, The Global Cauchy problem for nonlinear Klein-Gordon equation,, Math. Z, 189 (1985), 487. doi: 10.1007/BF01168155.

[9]

E. Gross, Hydrodynamics of a superfluid condensate,, J. Math. Phys., 4 (1963), 195. doi: 10.1063/1.1703944.

[10]

S. Ibrahim, M. Majdoub and N. Masmoudi, Global solutions for a semilinear $2D$ Klein-Gordon equation with exponential type nonlinearity,, Comm. Pure App. Math., 59 (2006), 1639. doi: 10.1002/cpa.20127.

[11]

S. Ibrahim, M. Majdoub and N. Masmoudi, Instability of $H^1$-supercritical waves,, C. R. Acad. Sci. Paris, 345 (2007), 133. doi: 10.1016/j.crma.2007.06.008.

[12]

S. Ibrahim, M. Majdoub, R. Jrad and T. Saanouni, Global well posedness of a $2D$ semilinear heat equation,, Bull. Belg. Math. Soc., 21 (2014), 535.

[13]

N. Ioku, The Cauchy problem for heat equations with exponential nonlinearity,, J. D. E., 251 (2011), 1172. doi: 10.1016/j.jde.2011.02.015.

[14]

J. F. Lam, B. Lippman and F. Trappert, Self trapped laser beams in plasma,, Phys. Fluid, 20 (1977), 1176. doi: 10.1063/1.861679.

[15]

H. A. Levine, Some nonexistence and stability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+F(u)$,, Arch. Rational Mech. Anal., 51 (1973), 371.

[16]

S. Le Coz, A note on Berestycki-Cazenave's classical instability result for nonlinear Schrödinger equations,, Adv. Nonlinear Stud., 8 (2008), 455.

[17]

O. Mahouachi and T. Saanouni, Global well posedness and linearization of a semilinear wave equation with exponential growth,, Georgian Math. J., 17 (2010), 543.

[18]

O. Mahouachi and T. Saanouni, Well and ill-posedness issues for a class of $2D$ wave equation with exponential growth,, J. Partial. Diff. Eqs., 24 (2011), 361. doi: 10.4208/jpde.v24.n4.7.

[19]

C. Miao and B. Zhang, The Cauchy problem for semilinear parabolic equations in Besov spaces,, Houston J. Math., 30 (2004), 829.

[20]

J. Moser, A sharp form of an inequality of N. Trudinger,, Ind. Univ. Math. J., 20 (1971), 1077.

[21]

M. Nakamura and T. Ozawa, Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth,, Math. Z., 231 (1999), 479. doi: 10.1007/PL00004737.

[22]

M. Nakamura and T. Ozawa, Nonlinear Schrödinger equations in the Sobolev space of critical order,, Journal of Functional Analysis, 155 (1998), 364. doi: 10.1006/jfan.1997.3236.

[23]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations,, Israel Journal of Mathematics, 22 (1975), 273. doi: 10.1007/BF02761595.

[24]

L. P. Pitaevski, Vortex lines in an imperfect Bose gas,, J. Experimental Theoret. Phys., 13 (1961), 451.

[25]

B. Ruf, A sharp Moser-Trudinger type inequality for unbounded domains in $\mathbbR^2$,, J. Funct. Anal, 219 (2005), 340. doi: 10.1016/j.jfa.2004.06.013.

[26]

T. Saanouni, Global well-posedness and scattering of a $2D$ Schrödinger equation with exponential growth,, Bull. Belg. Math. Soc. Simon Stevin., 17 (2010), 441.

[27]

T. Saanouni, Decay of solutions to a $2D$ Schrödinger equation with exponential growth,, J. P. D. E., 24 (2011), 37.

[28]

T. Saanouni, Remarks on the semilinear Schrödinger equation,, J. Math. Anal. Appl., 400 (2013), 331. doi: 10.1016/j.jmaa.2012.11.037.

[29]

T. Saanouni, Scattering of a $2D$ Schrödinger equation with exponential growth in the conformal space,, Math. Meth. Appl. Sci., 33 (2010), 1046. doi: 10.1002/mma.1237.

[30]

T. Saanouni, Global well-posedness and instability of a $2D$ Schrödinger equation with harmonic potential in the conformal space,, Journal of Abstract Differential Equations and Applications, 4 (2013), 23.

[31]

T. Saanouni, Blowing-up semilinear wave equation with exponential nonlinearity in two space dimensions,, Proc. Indian Acad. Sci. (Math. Sci.), 123 (2013), 365. doi: 10.1007/s12044-013-0132-9.

[32]

T. Saanouni, Global well-posedness of a damped Schrödinger equation in two space dimensions,, Math. Meth. Appl. Sci., 37 (2014), 488. doi: 10.1002/mma.2804.

[33]

T. Saanouni, A blowing up wave equation with exponential type nonlinearity and arbitrary positive energy,, J. Math. Anal. Appl., 421 (2015), 444. doi: 10.1016/j.jmaa.2014.07.033.

[34]

W. Strauss, Nonlinear Wave Equations,, CBMS Regional Conference Series in Math., (1989).

[35]

M. Struwe, The critical nonlinear wave equation in $2$ space dimensions,, J. European Math. Soc., 15 (2013), 1805. doi: 10.4171/JEMS/404.

[36]

M. Struwe, Global well-posedness of the Cauchy problem for a super-critical nonlinear wave equation in two space dimensions,, Math. Ann. Vol., 350 (2011), 707. doi: 10.1007/s00208-010-0567-6.

[37]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Self-Focusing and Wave Collapse,, Applied Mathematical Sciences. Vol. 139, (1999).

[38]

N. S. Trudinger, On imbedding into Orlicz spaces and some applications,, J. Math. Mech., 17 (1967), 473.

[39]

S. R. S. Varadhan, Lectures on Diffusion Problems and Partial Differential Equations,, Courant Institute of Mathematical Sciences, (1989).

show all references

References:
[1]

S. Adachi and K. Tanaka, Trudinger type inequalities in $\mathbbR^N$ and their best exponent,, Proc. Amer. Math. Society., 128 (1999), 2051. doi: 10.1090/S0002-9939-99-05180-1.

[2]

D. R. Adams, Sobolev Spaces,, Academic Press, (1975).

[3]

A. Atallah Baraket, Local existence and estimations for a semilinear wave equation in two dimension space,, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 7 (2004), 1.

[4]

H. Bahouri, S. Ibrahim and G. Perleman, Scattering for the critical 2-$D$ NLS with exponential growth,, Diff. Int. Eq., 27 (2014), 233.

[5]

T. Cazenave, An Introduction to Nonlinear Schrödinger Equations,, Textos de Metodos Matematicos, (1996).

[6]

J. Colliander, S. Ibrahim, M. Majdoub and N. Masmoudi, Energy critical NLS in two space dimensions,, J. Hyperbolic Differ. Equ., 6 (2009), 549. doi: 10.1142/S0219891609001927.

[7]

J. Ginibre and G. Velo, On a class of a nonlinear Schrödinger equations. II: Scattering theory, general case,, J. Funct. Anal., 32 (1979), 33. doi: 10.1016/0022-1236(79)90077-6.

[8]

J. Ginibre and G. Velo, The Global Cauchy problem for nonlinear Klein-Gordon equation,, Math. Z, 189 (1985), 487. doi: 10.1007/BF01168155.

[9]

E. Gross, Hydrodynamics of a superfluid condensate,, J. Math. Phys., 4 (1963), 195. doi: 10.1063/1.1703944.

[10]

S. Ibrahim, M. Majdoub and N. Masmoudi, Global solutions for a semilinear $2D$ Klein-Gordon equation with exponential type nonlinearity,, Comm. Pure App. Math., 59 (2006), 1639. doi: 10.1002/cpa.20127.

[11]

S. Ibrahim, M. Majdoub and N. Masmoudi, Instability of $H^1$-supercritical waves,, C. R. Acad. Sci. Paris, 345 (2007), 133. doi: 10.1016/j.crma.2007.06.008.

[12]

S. Ibrahim, M. Majdoub, R. Jrad and T. Saanouni, Global well posedness of a $2D$ semilinear heat equation,, Bull. Belg. Math. Soc., 21 (2014), 535.

[13]

N. Ioku, The Cauchy problem for heat equations with exponential nonlinearity,, J. D. E., 251 (2011), 1172. doi: 10.1016/j.jde.2011.02.015.

[14]

J. F. Lam, B. Lippman and F. Trappert, Self trapped laser beams in plasma,, Phys. Fluid, 20 (1977), 1176. doi: 10.1063/1.861679.

[15]

H. A. Levine, Some nonexistence and stability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+F(u)$,, Arch. Rational Mech. Anal., 51 (1973), 371.

[16]

S. Le Coz, A note on Berestycki-Cazenave's classical instability result for nonlinear Schrödinger equations,, Adv. Nonlinear Stud., 8 (2008), 455.

[17]

O. Mahouachi and T. Saanouni, Global well posedness and linearization of a semilinear wave equation with exponential growth,, Georgian Math. J., 17 (2010), 543.

[18]

O. Mahouachi and T. Saanouni, Well and ill-posedness issues for a class of $2D$ wave equation with exponential growth,, J. Partial. Diff. Eqs., 24 (2011), 361. doi: 10.4208/jpde.v24.n4.7.

[19]

C. Miao and B. Zhang, The Cauchy problem for semilinear parabolic equations in Besov spaces,, Houston J. Math., 30 (2004), 829.

[20]

J. Moser, A sharp form of an inequality of N. Trudinger,, Ind. Univ. Math. J., 20 (1971), 1077.

[21]

M. Nakamura and T. Ozawa, Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth,, Math. Z., 231 (1999), 479. doi: 10.1007/PL00004737.

[22]

M. Nakamura and T. Ozawa, Nonlinear Schrödinger equations in the Sobolev space of critical order,, Journal of Functional Analysis, 155 (1998), 364. doi: 10.1006/jfan.1997.3236.

[23]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations,, Israel Journal of Mathematics, 22 (1975), 273. doi: 10.1007/BF02761595.

[24]

L. P. Pitaevski, Vortex lines in an imperfect Bose gas,, J. Experimental Theoret. Phys., 13 (1961), 451.

[25]

B. Ruf, A sharp Moser-Trudinger type inequality for unbounded domains in $\mathbbR^2$,, J. Funct. Anal, 219 (2005), 340. doi: 10.1016/j.jfa.2004.06.013.

[26]

T. Saanouni, Global well-posedness and scattering of a $2D$ Schrödinger equation with exponential growth,, Bull. Belg. Math. Soc. Simon Stevin., 17 (2010), 441.

[27]

T. Saanouni, Decay of solutions to a $2D$ Schrödinger equation with exponential growth,, J. P. D. E., 24 (2011), 37.

[28]

T. Saanouni, Remarks on the semilinear Schrödinger equation,, J. Math. Anal. Appl., 400 (2013), 331. doi: 10.1016/j.jmaa.2012.11.037.

[29]

T. Saanouni, Scattering of a $2D$ Schrödinger equation with exponential growth in the conformal space,, Math. Meth. Appl. Sci., 33 (2010), 1046. doi: 10.1002/mma.1237.

[30]

T. Saanouni, Global well-posedness and instability of a $2D$ Schrödinger equation with harmonic potential in the conformal space,, Journal of Abstract Differential Equations and Applications, 4 (2013), 23.

[31]

T. Saanouni, Blowing-up semilinear wave equation with exponential nonlinearity in two space dimensions,, Proc. Indian Acad. Sci. (Math. Sci.), 123 (2013), 365. doi: 10.1007/s12044-013-0132-9.

[32]

T. Saanouni, Global well-posedness of a damped Schrödinger equation in two space dimensions,, Math. Meth. Appl. Sci., 37 (2014), 488. doi: 10.1002/mma.2804.

[33]

T. Saanouni, A blowing up wave equation with exponential type nonlinearity and arbitrary positive energy,, J. Math. Anal. Appl., 421 (2015), 444. doi: 10.1016/j.jmaa.2014.07.033.

[34]

W. Strauss, Nonlinear Wave Equations,, CBMS Regional Conference Series in Math., (1989).

[35]

M. Struwe, The critical nonlinear wave equation in $2$ space dimensions,, J. European Math. Soc., 15 (2013), 1805. doi: 10.4171/JEMS/404.

[36]

M. Struwe, Global well-posedness of the Cauchy problem for a super-critical nonlinear wave equation in two space dimensions,, Math. Ann. Vol., 350 (2011), 707. doi: 10.1007/s00208-010-0567-6.

[37]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Self-Focusing and Wave Collapse,, Applied Mathematical Sciences. Vol. 139, (1999).

[38]

N. S. Trudinger, On imbedding into Orlicz spaces and some applications,, J. Math. Mech., 17 (1967), 473.

[39]

S. R. S. Varadhan, Lectures on Diffusion Problems and Partial Differential Equations,, Courant Institute of Mathematical Sciences, (1989).

[1]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[2]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[3]

Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085

[4]

Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034

[5]

Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827

[6]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

[7]

Chenmin Sun, Hua Wang, Xiaohua Yao, Jiqiang Zheng. Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2207-2228. doi: 10.3934/dcds.2018091

[8]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[9]

Lili Du, Zheng-An Yao. Localization of blow-up points for a nonlinear nonlocal porous medium equation. Communications on Pure & Applied Analysis, 2007, 6 (1) : 183-190. doi: 10.3934/cpaa.2007.6.183

[10]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[11]

Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027

[12]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[13]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

[14]

Yue Liu. Existence of unstable standing waves for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 193-209. doi: 10.3934/cpaa.2008.7.193

[15]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[16]

Alp Eden, Elİf Kuz. Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1803-1823. doi: 10.3934/cpaa.2009.8.1803

[17]

Congming Peng, Dun Zhao. Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3335-3356. doi: 10.3934/dcdsb.2018323

[18]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[19]

Daiwen Huang, Jingjun Zhang. Global smooth solutions for the nonlinear Schrödinger equation with magnetic effect. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1753-1773. doi: 10.3934/dcdss.2016073

[20]

Takahisa Inui. Global dynamics of solutions with group invariance for the nonlinear schrödinger equation. Communications on Pure & Applied Analysis, 2017, 16 (2) : 557-590. doi: 10.3934/cpaa.2017028

2017 Impact Factor: 1.049

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]