December  2015, 4(4): 373-389. doi: 10.3934/eect.2015.4.373

Approximate controllability of abstract nonsimple thermoelastic problem

1. 

Ecole Nationale d'Ingénieurs de Bizerte, Université de Carthage, BP66, Campus Universitaire Menzel Abderrahman 7035

2. 

Faculté des Sciences de Bizerte, 7021 Zarzouna, Université de Carthage, Tunisia

Received  April 2015 Revised  October 2015 Published  November 2015

In this paper, an abstract nonsimple thermoelastic problem involving higher order gradients of displacement is considered with Dirichlet boundary conditions. We prove that the linear operator of the proposed system generates a strongly continuous semigroup which decays exponentially to zero. The optimal decay rate is determined explicitly by the physical parameters of the problem. Then we show the approximate controllability of the considered problem.
Citation: Moncef Aouadi, Taoufik Moulahi. Approximate controllability of abstract nonsimple thermoelastic problem. Evolution Equations & Control Theory, 2015, 4 (4) : 373-389. doi: 10.3934/eect.2015.4.373
References:
[1]

M. Aouadi, On uniform decay of a nonsimple thermoelastic bar with memory,, J. Math. Analysis Appl., 402 (2013), 745. doi: 10.1016/j.jmaa.2013.01.059. Google Scholar

[2]

M. Aouadi, Stability aspects in a nonsimple thermoelastic diffusion problem,, Appl. Anal., 92 (2013), 1816. doi: 10.1080/00036811.2012.702341. Google Scholar

[3]

M. Aouadi and T. Moulahi, Asymptotic analysis of a nonsimple thermoelastic rod,, Accepted in Disc. Cont. Dyn. Syst., (2015). Google Scholar

[4]

G. Avalos, Null controllability of von Karman thermoelastic plates under the clamped or free mechanical boundary conditions,, J. Math. Anal. Appl., 318 (2006), 410. doi: 10.1016/j.jmaa.2005.05.040. Google Scholar

[5]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation,, Rend. Istit. Mat. Univ. Trieste, 28 (1996), 1. Google Scholar

[6]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation,, SIAM J. Math. Anal., 29 (1998), 155. doi: 10.1137/S0036141096300823. Google Scholar

[7]

S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory,, Graduate Texts in Mathematics, (1992). doi: 10.1007/b97238. Google Scholar

[8]

A. Benabdallah and I. Lasiecka, Exponential decay rates for a full von Karman system of dynamic thermoelasticity,, J. Diff. Equat., 160 (2000), 51. doi: 10.1006/jdeq.1999.3656. Google Scholar

[9]

M. Ciarletta and D. Ieşan, Non-classical Elastic Solids,, Pitman Research Notes in Mathematical Series, (1993). Google Scholar

[10]

R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems,, Lecture Notes in Control and Information Sciences, (1978). Google Scholar

[11]

R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory,, Texts in Applied Mathematics, (1995). doi: 10.1007/978-1-4612-4224-6. Google Scholar

[12]

H. D. Fernàndez Sare, J. E. Munoz Rivera and R. Quintanilla, Decay of solutions in nonsimple thermoelastic bars,, Int. J. Eng. Sci., 48 (2010), 1233. doi: 10.1016/j.ijengsci.2010.04.014. Google Scholar

[13]

J. A. Gawinecki and J. Lazuka, Global solution on Cauchy problem in nonlinear non-simple thermoelastic materials,, Proc. Appl. Math. Mech., 6 (2006), 371. doi: 10.1002/pamm.200610167. Google Scholar

[14]

S. W. Hansen, Boundary control of a one-dimensional linear thermoelastic rod,, SIAM J. Control Optim., 32 (1994), 1052. doi: 10.1137/S0363012991222607. Google Scholar

[15]

S. W. Hansen, Exponential energy decay in a linear thermoelastic rod,, J. Math. Anal. Appl., 167 (1992), 429. doi: 10.1016/0022-247X(92)90217-2. Google Scholar

[16]

D. Ieşan, Thermoelastic Models of Continua,, Kluwer Academic Publishers, (2004). doi: 10.1007/978-1-4020-2310-1. Google Scholar

[17]

H. Kolakowski and J. Lazuka, The Cauchy problem for the system of partial differential equations describing nonsimple thermoelasticity,, Appl. Math., 35 (2008), 97. doi: 10.4064/am35-1-6. Google Scholar

[18]

I. Lasiecka and R. Triggiani, Two direct proofs on the analyticity of the s.c. semigroup arising in abstract thermo-elastic equations,, Adv. Diff. Equat., 3 (1998), 387. Google Scholar

[19]

G. Lebeau and E. Zuazua, Null controllability of a system of linear thermoelasticity,, Archives Rat. Mech. Anal., 141 (1998), 297. doi: 10.1007/s002050050078. Google Scholar

[20]

H. Leiva, Existence of bounded solutions of a second order system with dissipation,, J. Math. Anal. Appl., 237 (1999), 288. doi: 10.1006/jmaa.1999.6480. Google Scholar

[21]

H. Leiva and H. Zambrano, Rank condition for the controllability of a linear time-varying system,, Int. J. Control, 72 (1999), 929. doi: 10.1080/002071799220669. Google Scholar

[22]

H. Leiva, A necessary and sufficient algebraic condition for the controllability of a thermoelastic plate equation,, IMA J. Math. Cont. Inf., 20 (2003), 393. doi: 10.1093/imamci/20.4.393. Google Scholar

[23]

J.-L. Lions, Contrôlabilité,, Exacte Perturbations et Stabilisation de Systèmes Distribués, (1988). Google Scholar

[24]

W. J. Liu, Partial exact controllability and exponential stability of the higher dimensional linear thermoelasticity,, ESAIM Contrôle Optim. C-alc. Var., 3 (1998), 23. doi: 10.1051/cocv:1998101. Google Scholar

[25]

K. Narukawa, Boundary value control of thermoelastic systems,, Hiroshima Math. J., 13 (1983), 227. Google Scholar

[26]

V. Pata and R. Quintanilla, On the decay of solutions in nonsimple elastic solids with memory,, J. Math. Anal. Appl., 363 (2010), 19. doi: 10.1016/j.jmaa.2009.07.055. Google Scholar

[27]

R. Quintanilla, Thermoelasticity without energy dissipation of nonsimple materials,, Z. Angew. Math. Mech., 83 (2003), 172. doi: 10.1002/zamm.200310017. Google Scholar

[28]

A. E. Taylor and D. C. Lay, Introduction to Functional Analysis,, John Wiley and Sons. New York. 1980., (1980). Google Scholar

[29]

L. de Teresa and E. Zuazua, Controllability for the linear system of thermoelastic plates,, Adv. Diff. Equat., 1 (1996), 369. Google Scholar

[30]

E. Zuazua, Controllability of the linear system of thermoelasticity,, J. Math. Pures. Appl., 74 (1995), 291. Google Scholar

show all references

References:
[1]

M. Aouadi, On uniform decay of a nonsimple thermoelastic bar with memory,, J. Math. Analysis Appl., 402 (2013), 745. doi: 10.1016/j.jmaa.2013.01.059. Google Scholar

[2]

M. Aouadi, Stability aspects in a nonsimple thermoelastic diffusion problem,, Appl. Anal., 92 (2013), 1816. doi: 10.1080/00036811.2012.702341. Google Scholar

[3]

M. Aouadi and T. Moulahi, Asymptotic analysis of a nonsimple thermoelastic rod,, Accepted in Disc. Cont. Dyn. Syst., (2015). Google Scholar

[4]

G. Avalos, Null controllability of von Karman thermoelastic plates under the clamped or free mechanical boundary conditions,, J. Math. Anal. Appl., 318 (2006), 410. doi: 10.1016/j.jmaa.2005.05.040. Google Scholar

[5]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation,, Rend. Istit. Mat. Univ. Trieste, 28 (1996), 1. Google Scholar

[6]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation,, SIAM J. Math. Anal., 29 (1998), 155. doi: 10.1137/S0036141096300823. Google Scholar

[7]

S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory,, Graduate Texts in Mathematics, (1992). doi: 10.1007/b97238. Google Scholar

[8]

A. Benabdallah and I. Lasiecka, Exponential decay rates for a full von Karman system of dynamic thermoelasticity,, J. Diff. Equat., 160 (2000), 51. doi: 10.1006/jdeq.1999.3656. Google Scholar

[9]

M. Ciarletta and D. Ieşan, Non-classical Elastic Solids,, Pitman Research Notes in Mathematical Series, (1993). Google Scholar

[10]

R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems,, Lecture Notes in Control and Information Sciences, (1978). Google Scholar

[11]

R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory,, Texts in Applied Mathematics, (1995). doi: 10.1007/978-1-4612-4224-6. Google Scholar

[12]

H. D. Fernàndez Sare, J. E. Munoz Rivera and R. Quintanilla, Decay of solutions in nonsimple thermoelastic bars,, Int. J. Eng. Sci., 48 (2010), 1233. doi: 10.1016/j.ijengsci.2010.04.014. Google Scholar

[13]

J. A. Gawinecki and J. Lazuka, Global solution on Cauchy problem in nonlinear non-simple thermoelastic materials,, Proc. Appl. Math. Mech., 6 (2006), 371. doi: 10.1002/pamm.200610167. Google Scholar

[14]

S. W. Hansen, Boundary control of a one-dimensional linear thermoelastic rod,, SIAM J. Control Optim., 32 (1994), 1052. doi: 10.1137/S0363012991222607. Google Scholar

[15]

S. W. Hansen, Exponential energy decay in a linear thermoelastic rod,, J. Math. Anal. Appl., 167 (1992), 429. doi: 10.1016/0022-247X(92)90217-2. Google Scholar

[16]

D. Ieşan, Thermoelastic Models of Continua,, Kluwer Academic Publishers, (2004). doi: 10.1007/978-1-4020-2310-1. Google Scholar

[17]

H. Kolakowski and J. Lazuka, The Cauchy problem for the system of partial differential equations describing nonsimple thermoelasticity,, Appl. Math., 35 (2008), 97. doi: 10.4064/am35-1-6. Google Scholar

[18]

I. Lasiecka and R. Triggiani, Two direct proofs on the analyticity of the s.c. semigroup arising in abstract thermo-elastic equations,, Adv. Diff. Equat., 3 (1998), 387. Google Scholar

[19]

G. Lebeau and E. Zuazua, Null controllability of a system of linear thermoelasticity,, Archives Rat. Mech. Anal., 141 (1998), 297. doi: 10.1007/s002050050078. Google Scholar

[20]

H. Leiva, Existence of bounded solutions of a second order system with dissipation,, J. Math. Anal. Appl., 237 (1999), 288. doi: 10.1006/jmaa.1999.6480. Google Scholar

[21]

H. Leiva and H. Zambrano, Rank condition for the controllability of a linear time-varying system,, Int. J. Control, 72 (1999), 929. doi: 10.1080/002071799220669. Google Scholar

[22]

H. Leiva, A necessary and sufficient algebraic condition for the controllability of a thermoelastic plate equation,, IMA J. Math. Cont. Inf., 20 (2003), 393. doi: 10.1093/imamci/20.4.393. Google Scholar

[23]

J.-L. Lions, Contrôlabilité,, Exacte Perturbations et Stabilisation de Systèmes Distribués, (1988). Google Scholar

[24]

W. J. Liu, Partial exact controllability and exponential stability of the higher dimensional linear thermoelasticity,, ESAIM Contrôle Optim. C-alc. Var., 3 (1998), 23. doi: 10.1051/cocv:1998101. Google Scholar

[25]

K. Narukawa, Boundary value control of thermoelastic systems,, Hiroshima Math. J., 13 (1983), 227. Google Scholar

[26]

V. Pata and R. Quintanilla, On the decay of solutions in nonsimple elastic solids with memory,, J. Math. Anal. Appl., 363 (2010), 19. doi: 10.1016/j.jmaa.2009.07.055. Google Scholar

[27]

R. Quintanilla, Thermoelasticity without energy dissipation of nonsimple materials,, Z. Angew. Math. Mech., 83 (2003), 172. doi: 10.1002/zamm.200310017. Google Scholar

[28]

A. E. Taylor and D. C. Lay, Introduction to Functional Analysis,, John Wiley and Sons. New York. 1980., (1980). Google Scholar

[29]

L. de Teresa and E. Zuazua, Controllability for the linear system of thermoelastic plates,, Adv. Diff. Equat., 1 (1996), 369. Google Scholar

[30]

E. Zuazua, Controllability of the linear system of thermoelasticity,, J. Math. Pures. Appl., 74 (1995), 291. Google Scholar

[1]

Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721

[2]

Peng Sun. Exponential decay of Lebesgue numbers. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3773-3785. doi: 10.3934/dcds.2012.32.3773

[3]

Zhuangyi Liu, Ramón Quintanilla. Time decay in dual-phase-lag thermoelasticity: Critical case. Communications on Pure & Applied Analysis, 2018, 17 (1) : 177-190. doi: 10.3934/cpaa.2018011

[4]

Yaru Xie, Genqi Xu. The exponential decay rate of generic tree of 1-d wave equations with boundary feedback controls. Networks & Heterogeneous Media, 2016, 11 (3) : 527-543. doi: 10.3934/nhm.2016008

[5]

Maya Bassam, Denis Mercier, Ali Wehbe. Optimal energy decay rate of Rayleigh beam equation with only one boundary control force. Evolution Equations & Control Theory, 2015, 4 (1) : 21-38. doi: 10.3934/eect.2015.4.21

[6]

Hai-Liang Li, Hongjun Yu, Mingying Zhong. Spectrum structure and optimal decay rate of the relativistic Vlasov-Poisson-Landau system. Kinetic & Related Models, 2017, 10 (4) : 1089-1125. doi: 10.3934/krm.2017043

[7]

Mohammed Aassila. On energy decay rate for linear damped systems. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 851-864. doi: 10.3934/dcds.2002.8.851

[8]

Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations & Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021

[9]

Eugenii Shustin. Exponential decay of oscillations in a multidimensional delay differential system. Conference Publications, 2003, 2003 (Special) : 809-816. doi: 10.3934/proc.2003.2003.809

[10]

Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. A thermo piezoelectric model: Exponential decay of the total energy. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5273-5292. doi: 10.3934/dcds.2013.33.5273

[11]

Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503

[12]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

[13]

Sandra Carillo. Materials with memory: Free energies & solution exponential decay. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1235-1248. doi: 10.3934/cpaa.2010.9.1235

[14]

Zhuangyi Liu, Ramón Quintanilla. Energy decay rate of a mixed type II and type III thermoelastic system. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1433-1444. doi: 10.3934/dcdsb.2010.14.1433

[15]

Abdelaziz Soufyane, Belkacem Said-Houari. The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system. Evolution Equations & Control Theory, 2014, 3 (4) : 713-738. doi: 10.3934/eect.2014.3.713

[16]

Yoshikazu Giga, Yukihiro Seki, Noriaki Umeda. On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1463-1470. doi: 10.3934/dcds.2011.29.1463

[17]

Yongming Liu, Lei Yao. Global solution and decay rate for a reduced gravity two and a half layer model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2613-2638. doi: 10.3934/dcdsb.2018267

[18]

Salim A. Messaoudi, Abdelfeteh Fareh. Exponential decay for linear damped porous thermoelastic systems with second sound. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 599-612. doi: 10.3934/dcdsb.2015.20.599

[19]

Roberto Triggiani, Jing Zhang. Heat-viscoelastic plate interaction: Analyticity, spectral analysis, exponential decay. Evolution Equations & Control Theory, 2018, 7 (1) : 153-182. doi: 10.3934/eect.2018008

[20]

Alin Pogan, Kevin Zumbrun. Stable manifolds for a class of singular evolution equations and exponential decay of kinetic shocks. Kinetic & Related Models, 2019, 12 (1) : 1-36. doi: 10.3934/krm.2019001

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]