• Previous Article
    Mathematics of nonlinear acoustics
  • EECT Home
  • This Issue
  • Next Article
    On Fourier multipliers in function spaces with partial Hölder condition and their application to the linearized Cahn-Hilliard equation with dynamic boundary conditions
December  2015, 4(4): 431-445. doi: 10.3934/eect.2015.4.431

On the Cauchy problem for the Schrödinger-Hartree equation

1. 

Department of Mathematics, Northwest Normal University, Lanzhou 730070, China, China

Received  August 2015 Revised  October 2015 Published  November 2015

In this paper, we undertake a comprehensive study for the Schrödinger-Hartree equation \begin{equation*} iu_t +\Delta u+ \lambda (I_\alpha \ast |u|^{p})|u|^{p-2}u=0, \end{equation*} where $I_\alpha$ is the Riesz potential. Firstly, we address questions related to local and global well-posedness, finite time blow-up. Secondly, we derive the best constant of a Gagliardo-Nirenberg type inequality. Thirdly, the mass concentration is established for all the blow-up solutions in the $L^2$-critical case. Finally, the dynamics of the blow-up solutions with critical mass is in detail investigated in terms of the ground state.
Citation: Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations & Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431
References:
[1]

P. d'Avenia and M. Squassina, Soliton dynamics for the Schrödinger-Newton system,, Math. Models Methods Appl. Sci., 24 (2014), 553.  doi: 10.1142/S0218202513500590.  Google Scholar

[2]

C. Bonanno, P. d'Avenia, M. Ghimenti and M. Squassina, Soliton dynamics for the generalized Choquard equation,, J. Math. Anal. Appl., 417 (2014), 180.  doi: 10.1016/j.jmaa.2014.02.063.  Google Scholar

[3]

D. Cao and Y. Su, Minimal blow-up solutions of mass-critical inhomogeneous Hartree equation,, Journal of Mathematical Physics, 54 (2013).  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[4]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics, (2003).   Google Scholar

[5]

J. Chen and B. Guo, Strong instability of standing waves for a nonlocal Schrödinger equation,, Physica D: Nonlinear Phenomena, 227 (2007), 142.  doi: 10.1016/j.physd.2007.01.004.  Google Scholar

[6]

J. Frölich, T.-P. Tsai and H.-T. Yau, On the point-particle (Newtonian) limit of the non-linear Hartree equation,, Comm. Math. Phys., 225 (2002), 223.  doi: 10.1007/s002200100579.  Google Scholar

[7]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations with nonlocal interaction,, Math. Z., 170 (1980), 109.  doi: 10.1007/BF01214768.  Google Scholar

[8]

H. Genev and G. Venkov, Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation,, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 903.  doi: 10.3934/dcdss.2012.5.903.  Google Scholar

[9]

P. Gérard, Description du défaut de compacité de l'injection de Sobolev,, ESAIM Control Optim. Calc. Var., 3 (1998), 213.  doi: 10.1051/cocv:1998107.  Google Scholar

[10]

R. T. Glassey, On the blowing up of solution to the Cauchy problem for nonlinear Schrödinger operators,, J. Math. Phys., 18 (1977), 1794.  doi: 10.1063/1.523491.  Google Scholar

[11]

T. Kato, On nonlinear Schrödinger equations,, Ann. Inst. H. Poincaré Phys. Theor., 46 (1987), 113.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[12]

T. Kato, On nonlinear Schrödinger equations, II.$H^s$-solutions and unconditional wellposedness,, J. d'Analyse. Math., 67 (1995), 281.  doi: 10.1007/BF02787794.  Google Scholar

[13]

T. Hmidi and S. Keraani, Blowup theory for the critical nonlinear Schrödinger equations revisited,, International Mathematics Research Notices, 46 (2005), 2815.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[14]

M. Lewin and N. Rougerie, Derivation of Pekar's polarons from a microscopic model of quantum crystal,, SIAM J. Math. Anal., 45 (2013), 1267.  doi: 10.1137/110846312.  Google Scholar

[15]

X. G. Li, J. Zhang, S. Y. Lai and Y. H. Wu, The sharp threshold and limiting profile of blow-up solutions for a Davey-Stewartson system,, J. Diff. Eqns., 250 (2011), 2197.  doi: 10.1016/j.jde.2010.10.022.  Google Scholar

[16]

E. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation,, Studies in Appl. Math., 57 (1976), 93.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[17]

E. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation,, Studies in Appl. Math., 57 (1976), 93.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[18]

E. Lieb, Analysis,, 2nd ed., (2001).  doi: 10.1090/gsm/014.  Google Scholar

[19]

P.-L. Lions, The Choquard equation and related questions,, Nonlinear Anal., 4 (1980), 1063.  doi: 10.1016/0362-546X(80)90016-4.  Google Scholar

[20]

P.-L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, Part 1 and 2,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[21]

F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equation with critical power,, Duke Math. J., 69 (1993), 427.  doi: 10.1215/S0012-7094-93-06919-0.  Google Scholar

[22]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data,, J. Funct. Anal., 253 (2007), 605.  doi: 10.1016/j.jfa.2007.09.008.  Google Scholar

[23]

C. Miao, G. Xu and L. Zhao, On the blow-up phenomenon for the mass-critical focusing Hartree equation in $\mathbbR^4$,, Colloq. Math., 119 (2010), 23.  doi: 10.4064/cm119-1-2.  Google Scholar

[24]

V. Moroz and J. V. Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics,, J. Funct. Anal., 265 (2013), 153.  doi: 10.1016/j.jfa.2013.04.007.  Google Scholar

[25]

R. Penrose, Quantum computation, entanglement and state reduction,, Phil. Trans. R. Soc., 356 (1998), 1927.  doi: 10.1098/rsta.1998.0256.  Google Scholar

[26]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Comm. Math. Phys., 87 (1983), 567.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

show all references

References:
[1]

P. d'Avenia and M. Squassina, Soliton dynamics for the Schrödinger-Newton system,, Math. Models Methods Appl. Sci., 24 (2014), 553.  doi: 10.1142/S0218202513500590.  Google Scholar

[2]

C. Bonanno, P. d'Avenia, M. Ghimenti and M. Squassina, Soliton dynamics for the generalized Choquard equation,, J. Math. Anal. Appl., 417 (2014), 180.  doi: 10.1016/j.jmaa.2014.02.063.  Google Scholar

[3]

D. Cao and Y. Su, Minimal blow-up solutions of mass-critical inhomogeneous Hartree equation,, Journal of Mathematical Physics, 54 (2013).  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[4]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics, (2003).   Google Scholar

[5]

J. Chen and B. Guo, Strong instability of standing waves for a nonlocal Schrödinger equation,, Physica D: Nonlinear Phenomena, 227 (2007), 142.  doi: 10.1016/j.physd.2007.01.004.  Google Scholar

[6]

J. Frölich, T.-P. Tsai and H.-T. Yau, On the point-particle (Newtonian) limit of the non-linear Hartree equation,, Comm. Math. Phys., 225 (2002), 223.  doi: 10.1007/s002200100579.  Google Scholar

[7]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations with nonlocal interaction,, Math. Z., 170 (1980), 109.  doi: 10.1007/BF01214768.  Google Scholar

[8]

H. Genev and G. Venkov, Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation,, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 903.  doi: 10.3934/dcdss.2012.5.903.  Google Scholar

[9]

P. Gérard, Description du défaut de compacité de l'injection de Sobolev,, ESAIM Control Optim. Calc. Var., 3 (1998), 213.  doi: 10.1051/cocv:1998107.  Google Scholar

[10]

R. T. Glassey, On the blowing up of solution to the Cauchy problem for nonlinear Schrödinger operators,, J. Math. Phys., 18 (1977), 1794.  doi: 10.1063/1.523491.  Google Scholar

[11]

T. Kato, On nonlinear Schrödinger equations,, Ann. Inst. H. Poincaré Phys. Theor., 46 (1987), 113.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[12]

T. Kato, On nonlinear Schrödinger equations, II.$H^s$-solutions and unconditional wellposedness,, J. d'Analyse. Math., 67 (1995), 281.  doi: 10.1007/BF02787794.  Google Scholar

[13]

T. Hmidi and S. Keraani, Blowup theory for the critical nonlinear Schrödinger equations revisited,, International Mathematics Research Notices, 46 (2005), 2815.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[14]

M. Lewin and N. Rougerie, Derivation of Pekar's polarons from a microscopic model of quantum crystal,, SIAM J. Math. Anal., 45 (2013), 1267.  doi: 10.1137/110846312.  Google Scholar

[15]

X. G. Li, J. Zhang, S. Y. Lai and Y. H. Wu, The sharp threshold and limiting profile of blow-up solutions for a Davey-Stewartson system,, J. Diff. Eqns., 250 (2011), 2197.  doi: 10.1016/j.jde.2010.10.022.  Google Scholar

[16]

E. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation,, Studies in Appl. Math., 57 (1976), 93.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[17]

E. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation,, Studies in Appl. Math., 57 (1976), 93.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[18]

E. Lieb, Analysis,, 2nd ed., (2001).  doi: 10.1090/gsm/014.  Google Scholar

[19]

P.-L. Lions, The Choquard equation and related questions,, Nonlinear Anal., 4 (1980), 1063.  doi: 10.1016/0362-546X(80)90016-4.  Google Scholar

[20]

P.-L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, Part 1 and 2,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[21]

F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equation with critical power,, Duke Math. J., 69 (1993), 427.  doi: 10.1215/S0012-7094-93-06919-0.  Google Scholar

[22]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data,, J. Funct. Anal., 253 (2007), 605.  doi: 10.1016/j.jfa.2007.09.008.  Google Scholar

[23]

C. Miao, G. Xu and L. Zhao, On the blow-up phenomenon for the mass-critical focusing Hartree equation in $\mathbbR^4$,, Colloq. Math., 119 (2010), 23.  doi: 10.4064/cm119-1-2.  Google Scholar

[24]

V. Moroz and J. V. Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics,, J. Funct. Anal., 265 (2013), 153.  doi: 10.1016/j.jfa.2013.04.007.  Google Scholar

[25]

R. Penrose, Quantum computation, entanglement and state reduction,, Phil. Trans. R. Soc., 356 (1998), 1927.  doi: 10.1098/rsta.1998.0256.  Google Scholar

[26]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Comm. Math. Phys., 87 (1983), 567.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[1]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[2]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[3]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[4]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[5]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[6]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[7]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[8]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[9]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[10]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[11]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[12]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[13]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[14]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[15]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[16]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[17]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[18]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[19]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[20]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (119)
  • HTML views (0)
  • Cited by (23)

Other articles
by authors

[Back to Top]