December  2015, 4(4): 447-491. doi: 10.3934/eect.2015.4.447

Mathematics of nonlinear acoustics

1. 

Alpen-Adria-Universität Klagenfurt, Universitätsstraße 65-67, 9020 Klagenfurt, Austria

Received  May 2015 Revised  October 2015 Published  November 2015

The aim of this paper is to highlight some recent developments and outcomes in the mathematical analysis of partial differential equations describing nonlinear sound propagation. Here the emphasis lies on well-posedness and decay results, first of all for the classical models of nonlinear acoustics, later on also for some higher order models. Besides quoting results, we also try to give an idea on their derivation by showning some of the crucial energy estimates. A section is devoted to optimization problems arising in the practical use of high intensity ultrasound.
    While this review puts a certain focus on results obtained in the context of the mentioned FWF project, we also provide some important additional references (although certainly not all of them) for interesting further reading.
Citation: Barbara Kaltenbacher. Mathematics of nonlinear acoustics. Evolution Equations and Control Theory, 2015, 4 (4) : 447-491. doi: 10.3934/eect.2015.4.447
References:
[1]

J.-J. Alibert and J.-P. Raymond, A Lagrange multiplier theorem for control problems with state constraints, Numer. Funct. Anal. Optim., 19 (1998), 697-704. doi: 10.1080/01630569808816854.

[2]

H. Amann, Linear and Quasilinear Parabolic Problems: Volume I: Abstract Linear Theory, Monographs in Mathematics, 89, Birkhäuser, Boston, 1995. doi: 10.1007/978-3-0348-9221-6.

[3]

H. Amann, Anisotropic Function Spaces and Maximal Regularity for Parabolic Problems. Part 1: Function spaces, Jindřich Nečas Center for Mathematical Modeling Lecture Notes, 6, Matfyzpress, 2009.

[4]

Y. Angel and C. Aristégui, Weakly nonlinear waves in fluids of low viscosity: Lagrangian and eulerian descriptions, International Journal of Engineering Science, 74 (2014), 190-206. doi: 10.1016/j.ijengsci.2013.09.005.

[5]

A. Bamberger, R. Glowinski and Q. H. Tran, A domain decomposition method for the acoustic wave equation with discontinuous coefficients and grid change, SIAM J. Numer. Anal., 34 (1997), 603-639. doi: 10.1137/S0036142994261518.

[6]

A. Bermúdez, R. Rodríguez and D. Santamarina, Finite element approximation of a displacement formulation for time-domain elastoacoustic vibrations, J. Comput. Appl. Math., 152 (2003), 17-34. doi: 10.1016/S0377-0427(02)00694-5.

[7]

D. Blackstock, Approximate Equations Governing Finite-Amplitude Sound in Thermoviscous Fluids, Tech Report GD/E Report GD-1463-52 General Dynamics Corp., Rochester, New York, 1963.

[8]

J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-Verlag, New York, 2000. doi: 10.1007/978-1-4612-1394-9.

[9]

J. F. Bonnans and E. Casas, Optimal control of semilinear multistate systems with state constraints, SIAM J. Contr. Opt., 27 (1989), 446-455. doi: 10.1137/0327023.

[10]

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer, New York, 1991. doi: 10.1007/978-1-4612-3172-1.

[11]

R. Brunnhuber, Well-posedness and exponential decay of solutions for the Blackstock-Crighton-Kuznetsov equation, J. Math. Anal. Appl., 433 (2016), 1037-1054. doi: 10.1016/j.jmaa.2015.07.046.

[12]

R. Brunnhuber and P. Jordan, On the reduction of Blackstock's model of thermoviscous compressible flow via Becker's assumption, submitted.

[13]

R. Brunnhuber and B. Kaltenbacher, Well-posedness and asymptotic behavior of solutions for the Blackstock-Crighton-Westervelt model equation, Discrete and Continuous Dynamical Systems - A, 34 (2014), 4515-4535. doi: 10.3934/dcds.2014.34.4515.

[14]

R. Brunnhuber, B. Kaltenbacher and P. Radu, Relaxation of regularity for the Westervelt equation by nonlinear damping with application in acoustic-acoustic and elastic-acoustic coupling, Evolution Equations and Control Theory, 3 (2014), 595-626. doi: 10.3934/eect.2014.3.595.

[15]

R. Brunnhuber, Well-posedness and Long-Time Behavior of Solutions for the Blackstock-Crighton Equation, PhD thesis, Alpen-Adria-Universität Klagenfurt, 2015.

[16]

R. Brunnhuber and S. Meyer, Optimal regularity and exponential stability for the Blackstock-Crighton equation in $L_p$-spaces with Dirichlet and Neumann boundary conditions, arXiv:1506.02918v1 and submitted.

[17]

J. Burgers, The Nonlinear Diffusion Equation, Springer, Berlin, New York, 1974. doi: 10.1007/978-94-010-1745-9.

[18]

E. Casas and F. Tröltzsch, Error estimates for the finite-element approximation of a semilinear elliptic control problem, Control and Cybernetics, 31 (2002), 695-712.

[19]

M. Chen, M. Torres and T. Walsh, Existence of traveling wave solutions of a high-order nonlinear acoustic wave equation, Physics Letters A, 373 (2009), 1037-1043. doi: 10.1016/j.physleta.2009.01.042.

[20]

S. P. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems, Pacific J. Math., 136 (1989), 15-55. doi: 10.2140/pjm.1989.136.15.

[21]

C. Christov, On frame indifferent formulation of the maxwell-cattaneo model of finite-speed heat conduction, Mechanics Research Communications, 36 (2009), 481-486. doi: 10.1016/j.mechrescom.2008.11.003.

[22]

I. Christov, C. I. Christov and P. M. Jordan, Modeling weakly nonlinear acoustic wave propagation, The Quarterly Journal of Mechanics and Applied Mathematics, 60 (2007), 473-495. doi: 10.1093/qjmam/hbm017.

[23]

C. Clason and B. Kaltenbacher, Avoiding degeneracy in the westervelt equation by state constrained optimal control, Evolution Equations and Control Theory, 2 (2013), 281-300. doi: 10.3934/eect.2013.2.281.

[24]

C. Clason, B. Kaltenbacher and S. Veljovic, Boundary optimal control of the Westervelt and the Kuznetsov equation, J. Math. Anal. Appl., 356 (2009), 738-751. doi: 10.1016/j.jmaa.2009.03.043.

[25]

A. Conejero, C. Lizama and F. Rodenas, Chaotic behaviour of the solutions of the Moore-Gibson- Thompson equation, Applied Mathematics & Information Sciences.

[26]

G. Crighton David, Model equations of nonlinear acoustics, Annual Review of Fluid Mechanics, 11 (1979), 11-33.

[27]

M. Delfour and J.-P. Zolesio, Shapes and Geometries, SIAM, 2001.

[28]

M. Delfour, Shape derivatives and differentiability of min max, in Shape Optimization and Free Boundaries (eds. M. Delfour and G. Sabidussi), NATO ASI Series, 380, Springer Netherlands, 1992, 35-111. doi: 10.1007/978-94-011-2710-3_2.

[29]

R. Denk, M. Hieber and J. Prüß, R-boundedness, Fourier multipliers, and problems of elliptic and parabolic type, Memoirs Amer. Math. Soc., 166 (2003), viii+114 pp. doi: 10.1090/memo/0788.

[30]

T. Dreyer, W. Kraus, E. Bauer and R. E. Riedlinger, Investigations of compact focusing transducers using stacked piezoelectric elements for strong sound pulses in therapy, in Proceedings of the IEEE Ultrasonics Symposium, IEEE, {2}, 2000, 1239-1242. doi: 10.1109/ULTSYM.2000.921547.

[31]

B. Enflo and C. Hedberg, Theory of Nonlinear Acoustics in Fluids, Fluid Mechanics and Its Applications, Springer Netherlands, 2006. Available from: https://books.google.at/books?id=GuHpBwAAQBAJ.

[32]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, American Mathematical Society, Providence, R.I., 1998.

[33]

B. Flemisch, M. Kaltenbacher and B. Wohlmuth, Elasto-acoustic and acoustic-acoustic coupling on nonmatching grids, Int. J. Numer. Meth. Engng., 67 (2006), 1791-1810. doi: 10.1002/nme.1669.

[34]

M. Hamilton and D. Blackstock, Nonlinear Acoustics, Academic Press, 1998.

[35]

J. Haslinger and R. A. E. Mäkinen, Introduction to Shape Optimization: Theory, Approximation, and Computation, SIAM, Philadelphia, 2003. doi: 10.1137/1.9780898718690.

[36]

J. Hoffelner, H. Landes, M. Kaltenbacher and R. Lerch, Finite element simulation of nonlinear wave propagation in thermoviscous fluids including dissipation, IEEE Transactions on Ultrasonics, Ferroelectics, and Frequency Control, 48 (2001), 779-786. doi: 10.1109/58.920712.

[37]

K. Ito, K. Kunisch and G. H. Peichl, Variational approach to shape derivatives for a class of bernoulli problems, Journal of Mathematical Analysis and Applications, 314 (2006), 126-149. doi: 10.1016/j.jmaa.2005.03.100.

[38]

K. Ito, K. Kunisch and G. H. Peichl, Variational approach to shape derivatives, ESAIM: Control, Optimisation and Calculus of Variations, 14 (2008), 517-539. doi: 10.1051/cocv:2008002.

[39]

P. M. Jordan, Second-sound phenomena in inviscid, thermally relaxing gases, Discrete Contin. Dyn. Syst., Ser. B, 19 (2014), 2189-2205. doi: 10.3934/dcdsb.2014.19.2189.

[40]

P. Jordan, Nonlinear acoustic phenomena in viscous thermally relaxing fluids: Shock bifurcation and the emergence of diffusive solitons, J. Acoust. Soc. Am., 124 (2008), P2491. doi: 10.1121/1.4782790.

[41]

P. Jordan, An analytical study of kuznetsov's equation: Diffusive solitons, shock formation, and solution bifurcation, Phys. Lett. A, 326 (2004), 77-84. doi: 10.1016/j.physleta.2004.03.067.

[42]

P. Jordan, Weakly nonlinear harmonic acoustic waves in classical thermoviscous fluids: A perturbation analysis, in Proceedings of the OCEANS 2009 MTS/IEEE BILOXI Conference & Exhibition, 2009.

[43]

B. Kaltenbacher, Boundary observability and stabilization for Westervelt type wave equations, Applied Mathematics and Optimization, 62 (2010), 381-410. doi: 10.1007/s00245-010-9108-7.

[44]

B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation, Discrete and Continuous Dynamical Systems (DCDS), 2 (2009), 503-523. doi: 10.3934/dcdss.2009.2.503.

[45]

B. Kaltenbacher and I. Lasiecka, Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions, Discrete and Continuous Dynamical Systems Supplement, 2 (2011), 763-773.

[46]

B. Kaltenbacher and I. Lasiecka, An analysis of nonhomogeneous Kuznetsov's equation: Local and global well-posedness; exponential decay, Mathematische Nachrichten, 285 (2012), 295-321. doi: 10.1002/mana.201000007.

[47]

B. Kaltenbacher, I. Lasiecka and R. Marchand, Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equations arising in high intensity ultrasound, Control and Cybernetics, 40 (2011), 971-988.

[48]

B. Kaltenbacher, I. Lasiecka and M. Pospieszalska, Wellposedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound, M3AS, 22 (2012), 1250035, 34pp. doi: 10.1142/S0218202512500352.

[49]

B. Kaltenbacher, I. Lasiecka and S. Veljovic, Well-posedness and exponential decay for the Westervelt equation with inhomogeneous Dirichlet boundary data, in Parabolic problems: Progr. Nonlinear Differential Equations Appl., 80, Birkhäuser/Springer Basel AG, Basel, 2011, 357-387. doi: 10.1007/978-3-0348-0075-4_19.

[50]

B. Kaltenbacher, V. Nikolic and M. Thalhammer, Efficient time integration methods based on operator splitting and application to the Westervelt equation, IMA J. Numer. Anal., 35 (2015), 1092-1124. doi: 10.1093/imanum/dru029.

[51]

B. Kaltenbacher and G. Peichl, Sensitivity analysis for a shape optimization problem in lithotripsy, submitted.

[52]

B. Kaltenbacher and I. Shevchenko, Well-posedness of the Westervelt equation with higher order absorbing boundary conditions, submitted.

[53]

B. Kaltenbacher and S. Veljovic, Sensitivity analysis of linear and nonlinear lithotripter models, European Journal of Applied Mathematics, 22 (2011), 21-43. doi: 10.1017/S0956792510000276.

[54]

M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators, 3rd edition, Springer, Berlin, 2015.

[55]

R. S. Keiffer, R. McNorton, P. Jordan and I. C. Christov, Dissipative acoustic solitons under a weakly-nonlinear, Lagrangian-averaged Euler-$\alpha$ model of single-phase lossless fluids, Wave Motion, 48 (2011), 782-790. doi: 10.1016/j.wavemoti.2011.04.013.

[56]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Research in Applied Mathematics, Masson Chichester New York Brisbane, Paris, Milan, Barcelona, 1994.

[57]

N. A. Kudryashov and D. I. Sinelshchikov, Nonlinear waves in bubbly liquids with consideration for viscosity and heat transfer, Physics Letters A, 374 (2010), 2011-2016. doi: 10.1016/j.physleta.2010.02.067.

[58]

V. Kuznetsov, Equations of nonlinear acoustics, Soviet Physics-Acoustics, 16 (1971), 467-470.

[59]

I. Lasiecka and W. X., Moore-Gibson-Thompson equation with memory, part I: Exponential decay of energy, submitted.

[60]

I. Lasiecka and X. Wang, Moore-Gibson-Thompson equation with memory, part II: General decay of energy, Journal of Differential Equations, 259 (2015), 7610-7635. doi: 10.1016/j.jde.2015.08.052.

[61]

M. B. Lesser and R. Seebass, The structure of a weak shock wave undergoing reflexion from a wall, Journal of Fluid Mechanics, 31 (1968), 501-528. doi: 10.1017/S0022112068000303.

[62]

M. Liebler, Modellierung der Dynamischen Wechselwirkung von Hochintensiven Ultraschallfeldern mit Kavitationsblasen, PhD thesis, University of Karlsruhe, 2006.

[63]

S. Liu and R. Triggiani, An inverse problem for a third order pde arising in high-intensity ultrasound: Global uniqueness and stability by one boundary measurement, Journal of Inverse and Ill-Posed Problems, 21 (2013), 825-869. doi: 10.1515/jip-2012-0096.

[64]

S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, part I, Acustica, Acta Acustica, 82 (1996), 579-606.

[65]

S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, part II, Acustica, Acta Acustica, 83 (1997), 197-222.

[66]

S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, part III, Acustica, Acta Acustica, 83 (1997), 827-846.

[67]

R. Marchand, T. McDevitt and R. Triggiani, An abstract semigroup approach to the third-order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability, Mathematical Methods in the Applied Sciences, 35 (2012), 1896-1929. doi: 10.1002/mma.1576.

[68]

S. Meyer and M. Wilke, Optimal regularity and long-time behavior of solutions for the Westervelt equation, Applied Mathematics and Optimization, 64 (2011), 257-271. doi: 10.1007/s00245-011-9138-9.

[69]

S. Meyer and M. Wilke, Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces, Evolution Equations and Control Theory, 2 (2013), 365-378. doi: 10.3934/eect.2013.2.365.

[70]

P. Neittaanmäki and D. Tiba, Fixed domain approaches in shape optimization problems, Inverse Problems, 28 (2012), 093001, 35pp. doi: 10.1088/0266-5611/28/9/093001.

[71]

V. Nikolić, Local existence results for the Westervelt equation with nonlinear damping and Neumann as well as absorbing boundary conditions, J. Math. Anal. Appl., 427 (2015), 1131-1167. doi: 10.1016/j.jmaa.2015.02.076.

[72]

V. Nikolić, On Certain Mathematical Aspects of Nonlinear Acoustics: Well-Posedness, Interface Coupling, and Shape Optimization, PhD thesis, Alpen-Adria-University Klagenfurt, 2015.

[73]

V. Nikolić and B. Kaltenbacher, On higher regularity for the Westervelt equation with strong nonlinear damping, submitted and arXiv:1506.02125.

[74]

V. Nikolić and B. Kaltenbacher, Sensitivity analysis for shape optimization of a focusing acoustic lens in lithotripsy, submitted and arXiv:1506.02781.

[75]

H. Ockendon and J. Ockendon, Nonlinearity in fluid resonances, Meccanica, 36 (2001), 297-321. doi: 10.1023/A:1013911407811.

[76]

H. Ockendon and J. Ockendon, Waves and Compressible Flow, Texts in Applied Mathematics, Springer, New York, 2004.

[77]

A. Pierce, Acoustics: An Introduction to Its Physical Principles and Applications, Acoustical Society of America, 1989. Available from: https://books.google.at/books?id=D8GqhULfKfAC.

[78]

A. Rasmussen, M. Sørensen, Y. Gaididei and P. Christiansen, Analytical and numerical modeling of front propagation and interaction of fronts in nonlinear thermoviscous fluids including dissipation, arXiv:0806.0105v2.

[79]

P. L. Rendón, R. Ezeta and A. Pérez-López, Nonlinear sound propagation in trumpets, Acta Acustica United with Acustica, 99 (2013), 607-614.

[80]

A. Rozanova, The Khokhlov-Zabolotskaya-Kuznetsov equation, Comptes Rendus Mathematique, 344 (2007), 337-342. doi: 10.1016/j.crma.2007.01.010.

[81]

A. Rozanova-Pierrat, On the controllability for the Khokhlov-Zabolotskaya-Kuznetsov-like equation, Appl. Anal., 89 (2010), 391-408. doi: 10.1080/00036810903569440.

[82]

A. Rozanova-Pierrat, On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media, Commun. Math. Sci., 7 (2009), 679-718. doi: 10.4310/CMS.2009.v7.n3.a9.

[83]

I. Shevchenko and B. Kaltenbacher, Absorbing boundary conditions for nonlinear acoustics: The westervelt equation, Journal of Computational Physics, 302 (2015), 200-221. doi: 10.1016/j.jcp.2015.08.051.

[84]

L. H. Soderholm, Nonlinear acoustics equations to third order - New stabilization of the Burnett equations, in Mathematical Modeling of Wave Phenomena, AIP Conference Proceedings, Amer. Inst. Physics, 834, 2006, 214-221. doi: 10.1063/1.2205805.

[85]

J. Sokolowski and J. Zolesio, Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer, Berlin, New York, 2012.

[86]

B. Straughan, Acoustic waves in a Cattaneo-Christov gas, Physics Letters A, 374 (2010), 2667-2669. doi: 10.1016/j.physleta.2010.04.054.

[87]

F. Tröltzsch, Optimal Control of Partial Differential Equations, Theory, Methods and Applications, vol. 112, Translated from the 2005 German original by Jürgen Sprekels, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/112.

[88]

R. Velasco-Segura and P. Rendón, A finite volume approach for the simulation of nonlinear dissipative acoustic wave propagation, Wave Motion, 58 (2015), 180-195. doi: 10.1016/j.wavemoti.2015.05.006.

[89]

T. Walsh and M. Torres, Finite element methods for nonlinear acoustics in fluids, J. Comput. Acoust., 15 (2007), 353-375. doi: 10.1142/S0218396X0700338X.

[90]

D. Wei and P. Jordan, A note on acoustic propagation in power-law fluids: Compact kinks, mild discontinuities, and a connection to finite-scale theory, International Journal of Non-Linear Mechanics, 48 (2013), 72-77. doi: 10.1016/j.ijnonlinmec.2012.07.006.

[91]

P. J. Westervelt, Parametric acoustic array, The Journal of the Acoustic Society of America, 35 (1963), 535-537. doi: 10.1121/1.1918525.

[92]

E. A. Zabolotskaya and R. V. Khokhlov, Quasi-plane waves in the non-linear acoustics of confined beams, Soviet Physics-Acoustics, 15 (1969), 35-40.

show all references

References:
[1]

J.-J. Alibert and J.-P. Raymond, A Lagrange multiplier theorem for control problems with state constraints, Numer. Funct. Anal. Optim., 19 (1998), 697-704. doi: 10.1080/01630569808816854.

[2]

H. Amann, Linear and Quasilinear Parabolic Problems: Volume I: Abstract Linear Theory, Monographs in Mathematics, 89, Birkhäuser, Boston, 1995. doi: 10.1007/978-3-0348-9221-6.

[3]

H. Amann, Anisotropic Function Spaces and Maximal Regularity for Parabolic Problems. Part 1: Function spaces, Jindřich Nečas Center for Mathematical Modeling Lecture Notes, 6, Matfyzpress, 2009.

[4]

Y. Angel and C. Aristégui, Weakly nonlinear waves in fluids of low viscosity: Lagrangian and eulerian descriptions, International Journal of Engineering Science, 74 (2014), 190-206. doi: 10.1016/j.ijengsci.2013.09.005.

[5]

A. Bamberger, R. Glowinski and Q. H. Tran, A domain decomposition method for the acoustic wave equation with discontinuous coefficients and grid change, SIAM J. Numer. Anal., 34 (1997), 603-639. doi: 10.1137/S0036142994261518.

[6]

A. Bermúdez, R. Rodríguez and D. Santamarina, Finite element approximation of a displacement formulation for time-domain elastoacoustic vibrations, J. Comput. Appl. Math., 152 (2003), 17-34. doi: 10.1016/S0377-0427(02)00694-5.

[7]

D. Blackstock, Approximate Equations Governing Finite-Amplitude Sound in Thermoviscous Fluids, Tech Report GD/E Report GD-1463-52 General Dynamics Corp., Rochester, New York, 1963.

[8]

J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-Verlag, New York, 2000. doi: 10.1007/978-1-4612-1394-9.

[9]

J. F. Bonnans and E. Casas, Optimal control of semilinear multistate systems with state constraints, SIAM J. Contr. Opt., 27 (1989), 446-455. doi: 10.1137/0327023.

[10]

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer, New York, 1991. doi: 10.1007/978-1-4612-3172-1.

[11]

R. Brunnhuber, Well-posedness and exponential decay of solutions for the Blackstock-Crighton-Kuznetsov equation, J. Math. Anal. Appl., 433 (2016), 1037-1054. doi: 10.1016/j.jmaa.2015.07.046.

[12]

R. Brunnhuber and P. Jordan, On the reduction of Blackstock's model of thermoviscous compressible flow via Becker's assumption, submitted.

[13]

R. Brunnhuber and B. Kaltenbacher, Well-posedness and asymptotic behavior of solutions for the Blackstock-Crighton-Westervelt model equation, Discrete and Continuous Dynamical Systems - A, 34 (2014), 4515-4535. doi: 10.3934/dcds.2014.34.4515.

[14]

R. Brunnhuber, B. Kaltenbacher and P. Radu, Relaxation of regularity for the Westervelt equation by nonlinear damping with application in acoustic-acoustic and elastic-acoustic coupling, Evolution Equations and Control Theory, 3 (2014), 595-626. doi: 10.3934/eect.2014.3.595.

[15]

R. Brunnhuber, Well-posedness and Long-Time Behavior of Solutions for the Blackstock-Crighton Equation, PhD thesis, Alpen-Adria-Universität Klagenfurt, 2015.

[16]

R. Brunnhuber and S. Meyer, Optimal regularity and exponential stability for the Blackstock-Crighton equation in $L_p$-spaces with Dirichlet and Neumann boundary conditions, arXiv:1506.02918v1 and submitted.

[17]

J. Burgers, The Nonlinear Diffusion Equation, Springer, Berlin, New York, 1974. doi: 10.1007/978-94-010-1745-9.

[18]

E. Casas and F. Tröltzsch, Error estimates for the finite-element approximation of a semilinear elliptic control problem, Control and Cybernetics, 31 (2002), 695-712.

[19]

M. Chen, M. Torres and T. Walsh, Existence of traveling wave solutions of a high-order nonlinear acoustic wave equation, Physics Letters A, 373 (2009), 1037-1043. doi: 10.1016/j.physleta.2009.01.042.

[20]

S. P. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems, Pacific J. Math., 136 (1989), 15-55. doi: 10.2140/pjm.1989.136.15.

[21]

C. Christov, On frame indifferent formulation of the maxwell-cattaneo model of finite-speed heat conduction, Mechanics Research Communications, 36 (2009), 481-486. doi: 10.1016/j.mechrescom.2008.11.003.

[22]

I. Christov, C. I. Christov and P. M. Jordan, Modeling weakly nonlinear acoustic wave propagation, The Quarterly Journal of Mechanics and Applied Mathematics, 60 (2007), 473-495. doi: 10.1093/qjmam/hbm017.

[23]

C. Clason and B. Kaltenbacher, Avoiding degeneracy in the westervelt equation by state constrained optimal control, Evolution Equations and Control Theory, 2 (2013), 281-300. doi: 10.3934/eect.2013.2.281.

[24]

C. Clason, B. Kaltenbacher and S. Veljovic, Boundary optimal control of the Westervelt and the Kuznetsov equation, J. Math. Anal. Appl., 356 (2009), 738-751. doi: 10.1016/j.jmaa.2009.03.043.

[25]

A. Conejero, C. Lizama and F. Rodenas, Chaotic behaviour of the solutions of the Moore-Gibson- Thompson equation, Applied Mathematics & Information Sciences.

[26]

G. Crighton David, Model equations of nonlinear acoustics, Annual Review of Fluid Mechanics, 11 (1979), 11-33.

[27]

M. Delfour and J.-P. Zolesio, Shapes and Geometries, SIAM, 2001.

[28]

M. Delfour, Shape derivatives and differentiability of min max, in Shape Optimization and Free Boundaries (eds. M. Delfour and G. Sabidussi), NATO ASI Series, 380, Springer Netherlands, 1992, 35-111. doi: 10.1007/978-94-011-2710-3_2.

[29]

R. Denk, M. Hieber and J. Prüß, R-boundedness, Fourier multipliers, and problems of elliptic and parabolic type, Memoirs Amer. Math. Soc., 166 (2003), viii+114 pp. doi: 10.1090/memo/0788.

[30]

T. Dreyer, W. Kraus, E. Bauer and R. E. Riedlinger, Investigations of compact focusing transducers using stacked piezoelectric elements for strong sound pulses in therapy, in Proceedings of the IEEE Ultrasonics Symposium, IEEE, {2}, 2000, 1239-1242. doi: 10.1109/ULTSYM.2000.921547.

[31]

B. Enflo and C. Hedberg, Theory of Nonlinear Acoustics in Fluids, Fluid Mechanics and Its Applications, Springer Netherlands, 2006. Available from: https://books.google.at/books?id=GuHpBwAAQBAJ.

[32]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, American Mathematical Society, Providence, R.I., 1998.

[33]

B. Flemisch, M. Kaltenbacher and B. Wohlmuth, Elasto-acoustic and acoustic-acoustic coupling on nonmatching grids, Int. J. Numer. Meth. Engng., 67 (2006), 1791-1810. doi: 10.1002/nme.1669.

[34]

M. Hamilton and D. Blackstock, Nonlinear Acoustics, Academic Press, 1998.

[35]

J. Haslinger and R. A. E. Mäkinen, Introduction to Shape Optimization: Theory, Approximation, and Computation, SIAM, Philadelphia, 2003. doi: 10.1137/1.9780898718690.

[36]

J. Hoffelner, H. Landes, M. Kaltenbacher and R. Lerch, Finite element simulation of nonlinear wave propagation in thermoviscous fluids including dissipation, IEEE Transactions on Ultrasonics, Ferroelectics, and Frequency Control, 48 (2001), 779-786. doi: 10.1109/58.920712.

[37]

K. Ito, K. Kunisch and G. H. Peichl, Variational approach to shape derivatives for a class of bernoulli problems, Journal of Mathematical Analysis and Applications, 314 (2006), 126-149. doi: 10.1016/j.jmaa.2005.03.100.

[38]

K. Ito, K. Kunisch and G. H. Peichl, Variational approach to shape derivatives, ESAIM: Control, Optimisation and Calculus of Variations, 14 (2008), 517-539. doi: 10.1051/cocv:2008002.

[39]

P. M. Jordan, Second-sound phenomena in inviscid, thermally relaxing gases, Discrete Contin. Dyn. Syst., Ser. B, 19 (2014), 2189-2205. doi: 10.3934/dcdsb.2014.19.2189.

[40]

P. Jordan, Nonlinear acoustic phenomena in viscous thermally relaxing fluids: Shock bifurcation and the emergence of diffusive solitons, J. Acoust. Soc. Am., 124 (2008), P2491. doi: 10.1121/1.4782790.

[41]

P. Jordan, An analytical study of kuznetsov's equation: Diffusive solitons, shock formation, and solution bifurcation, Phys. Lett. A, 326 (2004), 77-84. doi: 10.1016/j.physleta.2004.03.067.

[42]

P. Jordan, Weakly nonlinear harmonic acoustic waves in classical thermoviscous fluids: A perturbation analysis, in Proceedings of the OCEANS 2009 MTS/IEEE BILOXI Conference & Exhibition, 2009.

[43]

B. Kaltenbacher, Boundary observability and stabilization for Westervelt type wave equations, Applied Mathematics and Optimization, 62 (2010), 381-410. doi: 10.1007/s00245-010-9108-7.

[44]

B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation, Discrete and Continuous Dynamical Systems (DCDS), 2 (2009), 503-523. doi: 10.3934/dcdss.2009.2.503.

[45]

B. Kaltenbacher and I. Lasiecka, Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions, Discrete and Continuous Dynamical Systems Supplement, 2 (2011), 763-773.

[46]

B. Kaltenbacher and I. Lasiecka, An analysis of nonhomogeneous Kuznetsov's equation: Local and global well-posedness; exponential decay, Mathematische Nachrichten, 285 (2012), 295-321. doi: 10.1002/mana.201000007.

[47]

B. Kaltenbacher, I. Lasiecka and R. Marchand, Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equations arising in high intensity ultrasound, Control and Cybernetics, 40 (2011), 971-988.

[48]

B. Kaltenbacher, I. Lasiecka and M. Pospieszalska, Wellposedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound, M3AS, 22 (2012), 1250035, 34pp. doi: 10.1142/S0218202512500352.

[49]

B. Kaltenbacher, I. Lasiecka and S. Veljovic, Well-posedness and exponential decay for the Westervelt equation with inhomogeneous Dirichlet boundary data, in Parabolic problems: Progr. Nonlinear Differential Equations Appl., 80, Birkhäuser/Springer Basel AG, Basel, 2011, 357-387. doi: 10.1007/978-3-0348-0075-4_19.

[50]

B. Kaltenbacher, V. Nikolic and M. Thalhammer, Efficient time integration methods based on operator splitting and application to the Westervelt equation, IMA J. Numer. Anal., 35 (2015), 1092-1124. doi: 10.1093/imanum/dru029.

[51]

B. Kaltenbacher and G. Peichl, Sensitivity analysis for a shape optimization problem in lithotripsy, submitted.

[52]

B. Kaltenbacher and I. Shevchenko, Well-posedness of the Westervelt equation with higher order absorbing boundary conditions, submitted.

[53]

B. Kaltenbacher and S. Veljovic, Sensitivity analysis of linear and nonlinear lithotripter models, European Journal of Applied Mathematics, 22 (2011), 21-43. doi: 10.1017/S0956792510000276.

[54]

M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators, 3rd edition, Springer, Berlin, 2015.

[55]

R. S. Keiffer, R. McNorton, P. Jordan and I. C. Christov, Dissipative acoustic solitons under a weakly-nonlinear, Lagrangian-averaged Euler-$\alpha$ model of single-phase lossless fluids, Wave Motion, 48 (2011), 782-790. doi: 10.1016/j.wavemoti.2011.04.013.

[56]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Research in Applied Mathematics, Masson Chichester New York Brisbane, Paris, Milan, Barcelona, 1994.

[57]

N. A. Kudryashov and D. I. Sinelshchikov, Nonlinear waves in bubbly liquids with consideration for viscosity and heat transfer, Physics Letters A, 374 (2010), 2011-2016. doi: 10.1016/j.physleta.2010.02.067.

[58]

V. Kuznetsov, Equations of nonlinear acoustics, Soviet Physics-Acoustics, 16 (1971), 467-470.

[59]

I. Lasiecka and W. X., Moore-Gibson-Thompson equation with memory, part I: Exponential decay of energy, submitted.

[60]

I. Lasiecka and X. Wang, Moore-Gibson-Thompson equation with memory, part II: General decay of energy, Journal of Differential Equations, 259 (2015), 7610-7635. doi: 10.1016/j.jde.2015.08.052.

[61]

M. B. Lesser and R. Seebass, The structure of a weak shock wave undergoing reflexion from a wall, Journal of Fluid Mechanics, 31 (1968), 501-528. doi: 10.1017/S0022112068000303.

[62]

M. Liebler, Modellierung der Dynamischen Wechselwirkung von Hochintensiven Ultraschallfeldern mit Kavitationsblasen, PhD thesis, University of Karlsruhe, 2006.

[63]

S. Liu and R. Triggiani, An inverse problem for a third order pde arising in high-intensity ultrasound: Global uniqueness and stability by one boundary measurement, Journal of Inverse and Ill-Posed Problems, 21 (2013), 825-869. doi: 10.1515/jip-2012-0096.

[64]

S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, part I, Acustica, Acta Acustica, 82 (1996), 579-606.

[65]

S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, part II, Acustica, Acta Acustica, 83 (1997), 197-222.

[66]

S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, part III, Acustica, Acta Acustica, 83 (1997), 827-846.

[67]

R. Marchand, T. McDevitt and R. Triggiani, An abstract semigroup approach to the third-order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability, Mathematical Methods in the Applied Sciences, 35 (2012), 1896-1929. doi: 10.1002/mma.1576.

[68]

S. Meyer and M. Wilke, Optimal regularity and long-time behavior of solutions for the Westervelt equation, Applied Mathematics and Optimization, 64 (2011), 257-271. doi: 10.1007/s00245-011-9138-9.

[69]

S. Meyer and M. Wilke, Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces, Evolution Equations and Control Theory, 2 (2013), 365-378. doi: 10.3934/eect.2013.2.365.

[70]

P. Neittaanmäki and D. Tiba, Fixed domain approaches in shape optimization problems, Inverse Problems, 28 (2012), 093001, 35pp. doi: 10.1088/0266-5611/28/9/093001.

[71]

V. Nikolić, Local existence results for the Westervelt equation with nonlinear damping and Neumann as well as absorbing boundary conditions, J. Math. Anal. Appl., 427 (2015), 1131-1167. doi: 10.1016/j.jmaa.2015.02.076.

[72]

V. Nikolić, On Certain Mathematical Aspects of Nonlinear Acoustics: Well-Posedness, Interface Coupling, and Shape Optimization, PhD thesis, Alpen-Adria-University Klagenfurt, 2015.

[73]

V. Nikolić and B. Kaltenbacher, On higher regularity for the Westervelt equation with strong nonlinear damping, submitted and arXiv:1506.02125.

[74]

V. Nikolić and B. Kaltenbacher, Sensitivity analysis for shape optimization of a focusing acoustic lens in lithotripsy, submitted and arXiv:1506.02781.

[75]

H. Ockendon and J. Ockendon, Nonlinearity in fluid resonances, Meccanica, 36 (2001), 297-321. doi: 10.1023/A:1013911407811.

[76]

H. Ockendon and J. Ockendon, Waves and Compressible Flow, Texts in Applied Mathematics, Springer, New York, 2004.

[77]

A. Pierce, Acoustics: An Introduction to Its Physical Principles and Applications, Acoustical Society of America, 1989. Available from: https://books.google.at/books?id=D8GqhULfKfAC.

[78]

A. Rasmussen, M. Sørensen, Y. Gaididei and P. Christiansen, Analytical and numerical modeling of front propagation and interaction of fronts in nonlinear thermoviscous fluids including dissipation, arXiv:0806.0105v2.

[79]

P. L. Rendón, R. Ezeta and A. Pérez-López, Nonlinear sound propagation in trumpets, Acta Acustica United with Acustica, 99 (2013), 607-614.

[80]

A. Rozanova, The Khokhlov-Zabolotskaya-Kuznetsov equation, Comptes Rendus Mathematique, 344 (2007), 337-342. doi: 10.1016/j.crma.2007.01.010.

[81]

A. Rozanova-Pierrat, On the controllability for the Khokhlov-Zabolotskaya-Kuznetsov-like equation, Appl. Anal., 89 (2010), 391-408. doi: 10.1080/00036810903569440.

[82]

A. Rozanova-Pierrat, On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media, Commun. Math. Sci., 7 (2009), 679-718. doi: 10.4310/CMS.2009.v7.n3.a9.

[83]

I. Shevchenko and B. Kaltenbacher, Absorbing boundary conditions for nonlinear acoustics: The westervelt equation, Journal of Computational Physics, 302 (2015), 200-221. doi: 10.1016/j.jcp.2015.08.051.

[84]

L. H. Soderholm, Nonlinear acoustics equations to third order - New stabilization of the Burnett equations, in Mathematical Modeling of Wave Phenomena, AIP Conference Proceedings, Amer. Inst. Physics, 834, 2006, 214-221. doi: 10.1063/1.2205805.

[85]

J. Sokolowski and J. Zolesio, Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer, Berlin, New York, 2012.

[86]

B. Straughan, Acoustic waves in a Cattaneo-Christov gas, Physics Letters A, 374 (2010), 2667-2669. doi: 10.1016/j.physleta.2010.04.054.

[87]

F. Tröltzsch, Optimal Control of Partial Differential Equations, Theory, Methods and Applications, vol. 112, Translated from the 2005 German original by Jürgen Sprekels, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/112.

[88]

R. Velasco-Segura and P. Rendón, A finite volume approach for the simulation of nonlinear dissipative acoustic wave propagation, Wave Motion, 58 (2015), 180-195. doi: 10.1016/j.wavemoti.2015.05.006.

[89]

T. Walsh and M. Torres, Finite element methods for nonlinear acoustics in fluids, J. Comput. Acoust., 15 (2007), 353-375. doi: 10.1142/S0218396X0700338X.

[90]

D. Wei and P. Jordan, A note on acoustic propagation in power-law fluids: Compact kinks, mild discontinuities, and a connection to finite-scale theory, International Journal of Non-Linear Mechanics, 48 (2013), 72-77. doi: 10.1016/j.ijnonlinmec.2012.07.006.

[91]

P. J. Westervelt, Parametric acoustic array, The Journal of the Acoustic Society of America, 35 (1963), 535-537. doi: 10.1121/1.1918525.

[92]

E. A. Zabolotskaya and R. V. Khokhlov, Quasi-plane waves in the non-linear acoustics of confined beams, Soviet Physics-Acoustics, 15 (1969), 35-40.

[1]

Xin Zhong. Global well-posedness and exponential decay for 3D nonhomogeneous magneto-micropolar fluid equations with vacuum. Communications on Pure and Applied Analysis, 2022, 21 (2) : 493-515. doi: 10.3934/cpaa.2021185

[2]

Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure and Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

[3]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

[4]

Hyungjin Huh, Bora Moon. Low regularity well-posedness for Gross-Neveu equations. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1903-1913. doi: 10.3934/cpaa.2015.14.1903

[5]

Can Li, Weihua Deng, Lijing Zhao. Well-posedness and numerical algorithm for the tempered fractional differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1989-2015. doi: 10.3934/dcdsb.2019026

[6]

Iñigo U. Erneta. Well-posedness for boundary value problems for coagulation-fragmentation equations. Kinetic and Related Models, 2020, 13 (4) : 815-835. doi: 10.3934/krm.2020028

[7]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems and Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307

[8]

Jerry Bona, Hongqiu Chen. Well-posedness for regularized nonlinear dispersive wave equations. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1253-1275. doi: 10.3934/dcds.2009.23.1253

[9]

Giuseppe Floridia. Well-posedness for a class of nonlinear degenerate parabolic equations. Conference Publications, 2015, 2015 (special) : 455-463. doi: 10.3934/proc.2015.0455

[10]

Lin Shen, Shu Wang, Yongxin Wang. The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28 (2) : 691-719. doi: 10.3934/era.2020036

[11]

Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local well-posedness in low regularity of the MKDV equation with periodic boundary condition. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1635-1654. doi: 10.3934/dcds.2010.28.1635

[12]

Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure and Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261

[13]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[14]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure and Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

[15]

Wenming Hu, Huicheng Yin. Well-posedness of low regularity solutions to the second order strictly hyperbolic equations with non-Lipschitzian coefficients. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1891-1919. doi: 10.3934/cpaa.2019088

[16]

Kiyeon Lee. Low regularity well-posedness of Hartree type Dirac equations in 2, 3-dimensions. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3683-3702. doi: 10.3934/cpaa.2021126

[17]

Birgit Jacob, Hafida Laasri. Well-posedness of infinite-dimensional non-autonomous passive boundary control systems. Evolution Equations and Control Theory, 2021, 10 (2) : 385-409. doi: 10.3934/eect.2020072

[18]

Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3749-3778. doi: 10.3934/dcdsb.2021205

[19]

Luciano Abadías, Carlos Lizama, Pedro J. Miana, M. Pilar Velasco. On well-posedness of vector-valued fractional differential-difference equations. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2679-2708. doi: 10.3934/dcds.2019112

[20]

Hermen Jan Hupkes, Emmanuelle Augeraud-Véron. Well-posedness of initial value problems for functional differential and algebraic equations of mixed type. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 737-765. doi: 10.3934/dcds.2011.30.737

2021 Impact Factor: 1.169

Metrics

  • PDF downloads (649)
  • HTML views (0)
  • Cited by (21)

Other articles
by authors

[Back to Top]