Citation: |
[1] |
J.-J. Alibert and J.-P. Raymond, A Lagrange multiplier theorem for control problems with state constraints, Numer. Funct. Anal. Optim., 19 (1998), 697-704.doi: 10.1080/01630569808816854. |
[2] |
H. Amann, Linear and Quasilinear Parabolic Problems: Volume I: Abstract Linear Theory, Monographs in Mathematics, 89, Birkhäuser, Boston, 1995.doi: 10.1007/978-3-0348-9221-6. |
[3] |
H. Amann, Anisotropic Function Spaces and Maximal Regularity for Parabolic Problems. Part 1: Function spaces, Jindřich Nečas Center for Mathematical Modeling Lecture Notes, 6, Matfyzpress, 2009. |
[4] |
Y. Angel and C. Aristégui, Weakly nonlinear waves in fluids of low viscosity: Lagrangian and eulerian descriptions, International Journal of Engineering Science, 74 (2014), 190-206.doi: 10.1016/j.ijengsci.2013.09.005. |
[5] |
A. Bamberger, R. Glowinski and Q. H. Tran, A domain decomposition method for the acoustic wave equation with discontinuous coefficients and grid change, SIAM J. Numer. Anal., 34 (1997), 603-639.doi: 10.1137/S0036142994261518. |
[6] |
A. Bermúdez, R. Rodríguez and D. Santamarina, Finite element approximation of a displacement formulation for time-domain elastoacoustic vibrations, J. Comput. Appl. Math., 152 (2003), 17-34.doi: 10.1016/S0377-0427(02)00694-5. |
[7] |
D. Blackstock, Approximate Equations Governing Finite-Amplitude Sound in Thermoviscous Fluids, Tech Report GD/E Report GD-1463-52 General Dynamics Corp., Rochester, New York, 1963. |
[8] |
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-Verlag, New York, 2000.doi: 10.1007/978-1-4612-1394-9. |
[9] |
J. F. Bonnans and E. Casas, Optimal control of semilinear multistate systems with state constraints, SIAM J. Contr. Opt., 27 (1989), 446-455.doi: 10.1137/0327023. |
[10] |
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer, New York, 1991.doi: 10.1007/978-1-4612-3172-1. |
[11] |
R. Brunnhuber, Well-posedness and exponential decay of solutions for the Blackstock-Crighton-Kuznetsov equation, J. Math. Anal. Appl., 433 (2016), 1037-1054.doi: 10.1016/j.jmaa.2015.07.046. |
[12] |
R. Brunnhuber and P. Jordan, On the reduction of Blackstock's model of thermoviscous compressible flow via Becker's assumption, submitted. |
[13] |
R. Brunnhuber and B. Kaltenbacher, Well-posedness and asymptotic behavior of solutions for the Blackstock-Crighton-Westervelt model equation, Discrete and Continuous Dynamical Systems - A, 34 (2014), 4515-4535.doi: 10.3934/dcds.2014.34.4515. |
[14] |
R. Brunnhuber, B. Kaltenbacher and P. Radu, Relaxation of regularity for the Westervelt equation by nonlinear damping with application in acoustic-acoustic and elastic-acoustic coupling, Evolution Equations and Control Theory, 3 (2014), 595-626.doi: 10.3934/eect.2014.3.595. |
[15] |
R. Brunnhuber, Well-posedness and Long-Time Behavior of Solutions for the Blackstock-Crighton Equation, PhD thesis, Alpen-Adria-Universität Klagenfurt, 2015. |
[16] |
R. Brunnhuber and S. Meyer, Optimal regularity and exponential stability for the Blackstock-Crighton equation in $L_p$-spaces with Dirichlet and Neumann boundary conditions, arXiv:1506.02918v1 and submitted. |
[17] |
J. Burgers, The Nonlinear Diffusion Equation, Springer, Berlin, New York, 1974.doi: 10.1007/978-94-010-1745-9. |
[18] |
E. Casas and F. Tröltzsch, Error estimates for the finite-element approximation of a semilinear elliptic control problem, Control and Cybernetics, 31 (2002), 695-712. |
[19] |
M. Chen, M. Torres and T. Walsh, Existence of traveling wave solutions of a high-order nonlinear acoustic wave equation, Physics Letters A, 373 (2009), 1037-1043.doi: 10.1016/j.physleta.2009.01.042. |
[20] |
S. P. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems, Pacific J. Math., 136 (1989), 15-55.doi: 10.2140/pjm.1989.136.15. |
[21] |
C. Christov, On frame indifferent formulation of the maxwell-cattaneo model of finite-speed heat conduction, Mechanics Research Communications, 36 (2009), 481-486.doi: 10.1016/j.mechrescom.2008.11.003. |
[22] |
I. Christov, C. I. Christov and P. M. Jordan, Modeling weakly nonlinear acoustic wave propagation, The Quarterly Journal of Mechanics and Applied Mathematics, 60 (2007), 473-495.doi: 10.1093/qjmam/hbm017. |
[23] |
C. Clason and B. Kaltenbacher, Avoiding degeneracy in the westervelt equation by state constrained optimal control, Evolution Equations and Control Theory, 2 (2013), 281-300.doi: 10.3934/eect.2013.2.281. |
[24] |
C. Clason, B. Kaltenbacher and S. Veljovic, Boundary optimal control of the Westervelt and the Kuznetsov equation, J. Math. Anal. Appl., 356 (2009), 738-751.doi: 10.1016/j.jmaa.2009.03.043. |
[25] |
A. Conejero, C. Lizama and F. Rodenas, Chaotic behaviour of the solutions of the Moore-Gibson- Thompson equation, Applied Mathematics & Information Sciences. |
[26] |
G. Crighton David, Model equations of nonlinear acoustics, Annual Review of Fluid Mechanics, 11 (1979), 11-33. |
[27] |
M. Delfour and J.-P. Zolesio, Shapes and Geometries, SIAM, 2001. |
[28] |
M. Delfour, Shape derivatives and differentiability of min max, in Shape Optimization and Free Boundaries (eds. M. Delfour and G. Sabidussi), NATO ASI Series, 380, Springer Netherlands, 1992, 35-111.doi: 10.1007/978-94-011-2710-3_2. |
[29] |
R. Denk, M. Hieber and J. Prüß, R-boundedness, Fourier multipliers, and problems of elliptic and parabolic type, Memoirs Amer. Math. Soc., 166 (2003), viii+114 pp.doi: 10.1090/memo/0788. |
[30] |
T. Dreyer, W. Kraus, E. Bauer and R. E. Riedlinger, Investigations of compact focusing transducers using stacked piezoelectric elements for strong sound pulses in therapy, in Proceedings of the IEEE Ultrasonics Symposium, IEEE, {2}, 2000, 1239-1242.doi: 10.1109/ULTSYM.2000.921547. |
[31] |
B. Enflo and C. Hedberg, Theory of Nonlinear Acoustics in Fluids, Fluid Mechanics and Its Applications, Springer Netherlands, 2006. Available from: https://books.google.at/books?id=GuHpBwAAQBAJ. |
[32] |
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, American Mathematical Society, Providence, R.I., 1998. |
[33] |
B. Flemisch, M. Kaltenbacher and B. Wohlmuth, Elasto-acoustic and acoustic-acoustic coupling on nonmatching grids, Int. J. Numer. Meth. Engng., 67 (2006), 1791-1810.doi: 10.1002/nme.1669. |
[34] |
M. Hamilton and D. Blackstock, Nonlinear Acoustics, Academic Press, 1998. |
[35] |
J. Haslinger and R. A. E. Mäkinen, Introduction to Shape Optimization: Theory, Approximation, and Computation, SIAM, Philadelphia, 2003.doi: 10.1137/1.9780898718690. |
[36] |
J. Hoffelner, H. Landes, M. Kaltenbacher and R. Lerch, Finite element simulation of nonlinear wave propagation in thermoviscous fluids including dissipation, IEEE Transactions on Ultrasonics, Ferroelectics, and Frequency Control, 48 (2001), 779-786.doi: 10.1109/58.920712. |
[37] |
K. Ito, K. Kunisch and G. H. Peichl, Variational approach to shape derivatives for a class of bernoulli problems, Journal of Mathematical Analysis and Applications, 314 (2006), 126-149.doi: 10.1016/j.jmaa.2005.03.100. |
[38] |
K. Ito, K. Kunisch and G. H. Peichl, Variational approach to shape derivatives, ESAIM: Control, Optimisation and Calculus of Variations, 14 (2008), 517-539.doi: 10.1051/cocv:2008002. |
[39] |
P. M. Jordan, Second-sound phenomena in inviscid, thermally relaxing gases, Discrete Contin. Dyn. Syst., Ser. B, 19 (2014), 2189-2205.doi: 10.3934/dcdsb.2014.19.2189. |
[40] |
P. Jordan, Nonlinear acoustic phenomena in viscous thermally relaxing fluids: Shock bifurcation and the emergence of diffusive solitons, J. Acoust. Soc. Am., 124 (2008), P2491.doi: 10.1121/1.4782790. |
[41] |
P. Jordan, An analytical study of kuznetsov's equation: Diffusive solitons, shock formation, and solution bifurcation, Phys. Lett. A, 326 (2004), 77-84.doi: 10.1016/j.physleta.2004.03.067. |
[42] |
P. Jordan, Weakly nonlinear harmonic acoustic waves in classical thermoviscous fluids: A perturbation analysis, in Proceedings of the OCEANS 2009 MTS/IEEE BILOXI Conference & Exhibition, 2009. |
[43] |
B. Kaltenbacher, Boundary observability and stabilization for Westervelt type wave equations, Applied Mathematics and Optimization, 62 (2010), 381-410.doi: 10.1007/s00245-010-9108-7. |
[44] |
B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation, Discrete and Continuous Dynamical Systems (DCDS), 2 (2009), 503-523.doi: 10.3934/dcdss.2009.2.503. |
[45] |
B. Kaltenbacher and I. Lasiecka, Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions, Discrete and Continuous Dynamical Systems Supplement, 2 (2011), 763-773. |
[46] |
B. Kaltenbacher and I. Lasiecka, An analysis of nonhomogeneous Kuznetsov's equation: Local and global well-posedness; exponential decay, Mathematische Nachrichten, 285 (2012), 295-321.doi: 10.1002/mana.201000007. |
[47] |
B. Kaltenbacher, I. Lasiecka and R. Marchand, Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equations arising in high intensity ultrasound, Control and Cybernetics, 40 (2011), 971-988. |
[48] |
B. Kaltenbacher, I. Lasiecka and M. Pospieszalska, Wellposedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound, M3AS, 22 (2012), 1250035, 34pp.doi: 10.1142/S0218202512500352. |
[49] |
B. Kaltenbacher, I. Lasiecka and S. Veljovic, Well-posedness and exponential decay for the Westervelt equation with inhomogeneous Dirichlet boundary data, in Parabolic problems: Progr. Nonlinear Differential Equations Appl., 80, Birkhäuser/Springer Basel AG, Basel, 2011, 357-387.doi: 10.1007/978-3-0348-0075-4_19. |
[50] |
B. Kaltenbacher, V. Nikolic and M. Thalhammer, Efficient time integration methods based on operator splitting and application to the Westervelt equation, IMA J. Numer. Anal., 35 (2015), 1092-1124.doi: 10.1093/imanum/dru029. |
[51] |
B. Kaltenbacher and G. Peichl, Sensitivity analysis for a shape optimization problem in lithotripsy, submitted. |
[52] |
B. Kaltenbacher and I. Shevchenko, Well-posedness of the Westervelt equation with higher order absorbing boundary conditions, submitted. |
[53] |
B. Kaltenbacher and S. Veljovic, Sensitivity analysis of linear and nonlinear lithotripter models, European Journal of Applied Mathematics, 22 (2011), 21-43.doi: 10.1017/S0956792510000276. |
[54] |
M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators, 3rd edition, Springer, Berlin, 2015. |
[55] |
R. S. Keiffer, R. McNorton, P. Jordan and I. C. Christov, Dissipative acoustic solitons under a weakly-nonlinear, Lagrangian-averaged Euler-$\alpha$ model of single-phase lossless fluids, Wave Motion, 48 (2011), 782-790.doi: 10.1016/j.wavemoti.2011.04.013. |
[56] |
V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Research in Applied Mathematics, Masson Chichester New York Brisbane, Paris, Milan, Barcelona, 1994. |
[57] |
N. A. Kudryashov and D. I. Sinelshchikov, Nonlinear waves in bubbly liquids with consideration for viscosity and heat transfer, Physics Letters A, 374 (2010), 2011-2016.doi: 10.1016/j.physleta.2010.02.067. |
[58] |
V. Kuznetsov, Equations of nonlinear acoustics, Soviet Physics-Acoustics, 16 (1971), 467-470. |
[59] |
I. Lasiecka and W. X., Moore-Gibson-Thompson equation with memory, part I: Exponential decay of energy, submitted. |
[60] |
I. Lasiecka and X. Wang, Moore-Gibson-Thompson equation with memory, part II: General decay of energy, Journal of Differential Equations, 259 (2015), 7610-7635.doi: 10.1016/j.jde.2015.08.052. |
[61] |
M. B. Lesser and R. Seebass, The structure of a weak shock wave undergoing reflexion from a wall, Journal of Fluid Mechanics, 31 (1968), 501-528.doi: 10.1017/S0022112068000303. |
[62] |
M. Liebler, Modellierung der Dynamischen Wechselwirkung von Hochintensiven Ultraschallfeldern mit Kavitationsblasen, PhD thesis, University of Karlsruhe, 2006. |
[63] |
S. Liu and R. Triggiani, An inverse problem for a third order pde arising in high-intensity ultrasound: Global uniqueness and stability by one boundary measurement, Journal of Inverse and Ill-Posed Problems, 21 (2013), 825-869.doi: 10.1515/jip-2012-0096. |
[64] |
S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, part I, Acustica, Acta Acustica, 82 (1996), 579-606. |
[65] |
S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, part II, Acustica, Acta Acustica, 83 (1997), 197-222. |
[66] |
S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, part III, Acustica, Acta Acustica, 83 (1997), 827-846. |
[67] |
R. Marchand, T. McDevitt and R. Triggiani, An abstract semigroup approach to the third-order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability, Mathematical Methods in the Applied Sciences, 35 (2012), 1896-1929.doi: 10.1002/mma.1576. |
[68] |
S. Meyer and M. Wilke, Optimal regularity and long-time behavior of solutions for the Westervelt equation, Applied Mathematics and Optimization, 64 (2011), 257-271.doi: 10.1007/s00245-011-9138-9. |
[69] |
S. Meyer and M. Wilke, Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces, Evolution Equations and Control Theory, 2 (2013), 365-378.doi: 10.3934/eect.2013.2.365. |
[70] |
P. Neittaanmäki and D. Tiba, Fixed domain approaches in shape optimization problems, Inverse Problems, 28 (2012), 093001, 35pp.doi: 10.1088/0266-5611/28/9/093001. |
[71] |
V. Nikolić, Local existence results for the Westervelt equation with nonlinear damping and Neumann as well as absorbing boundary conditions, J. Math. Anal. Appl., 427 (2015), 1131-1167.doi: 10.1016/j.jmaa.2015.02.076. |
[72] |
V. Nikolić, On Certain Mathematical Aspects of Nonlinear Acoustics: Well-Posedness, Interface Coupling, and Shape Optimization, PhD thesis, Alpen-Adria-University Klagenfurt, 2015. |
[73] |
V. Nikolić and B. Kaltenbacher, On higher regularity for the Westervelt equation with strong nonlinear damping, submitted and arXiv:1506.02125. |
[74] |
V. Nikolić and B. Kaltenbacher, Sensitivity analysis for shape optimization of a focusing acoustic lens in lithotripsy, submitted and arXiv:1506.02781. |
[75] |
H. Ockendon and J. Ockendon, Nonlinearity in fluid resonances, Meccanica, 36 (2001), 297-321.doi: 10.1023/A:1013911407811. |
[76] |
H. Ockendon and J. Ockendon, Waves and Compressible Flow, Texts in Applied Mathematics, Springer, New York, 2004. |
[77] |
A. Pierce, Acoustics: An Introduction to Its Physical Principles and Applications, Acoustical Society of America, 1989. Available from: https://books.google.at/books?id=D8GqhULfKfAC. |
[78] |
A. Rasmussen, M. Sørensen, Y. Gaididei and P. Christiansen, Analytical and numerical modeling of front propagation and interaction of fronts in nonlinear thermoviscous fluids including dissipation, arXiv:0806.0105v2. |
[79] |
P. L. Rendón, R. Ezeta and A. Pérez-López, Nonlinear sound propagation in trumpets, Acta Acustica United with Acustica, 99 (2013), 607-614. |
[80] |
A. Rozanova, The Khokhlov-Zabolotskaya-Kuznetsov equation, Comptes Rendus Mathematique, 344 (2007), 337-342.doi: 10.1016/j.crma.2007.01.010. |
[81] |
A. Rozanova-Pierrat, On the controllability for the Khokhlov-Zabolotskaya-Kuznetsov-like equation, Appl. Anal., 89 (2010), 391-408.doi: 10.1080/00036810903569440. |
[82] |
A. Rozanova-Pierrat, On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media, Commun. Math. Sci., 7 (2009), 679-718.doi: 10.4310/CMS.2009.v7.n3.a9. |
[83] |
I. Shevchenko and B. Kaltenbacher, Absorbing boundary conditions for nonlinear acoustics: The westervelt equation, Journal of Computational Physics, 302 (2015), 200-221.doi: 10.1016/j.jcp.2015.08.051. |
[84] |
L. H. Soderholm, Nonlinear acoustics equations to third order - New stabilization of the Burnett equations, in Mathematical Modeling of Wave Phenomena, AIP Conference Proceedings, Amer. Inst. Physics, 834, 2006, 214-221.doi: 10.1063/1.2205805. |
[85] |
J. Sokolowski and J. Zolesio, Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer, Berlin, New York, 2012. |
[86] |
B. Straughan, Acoustic waves in a Cattaneo-Christov gas, Physics Letters A, 374 (2010), 2667-2669.doi: 10.1016/j.physleta.2010.04.054. |
[87] |
F. Tröltzsch, Optimal Control of Partial Differential Equations, Theory, Methods and Applications, vol. 112, Translated from the 2005 German original by Jürgen Sprekels, American Mathematical Society, Providence, RI, 2010.doi: 10.1090/gsm/112. |
[88] |
R. Velasco-Segura and P. Rendón, A finite volume approach for the simulation of nonlinear dissipative acoustic wave propagation, Wave Motion, 58 (2015), 180-195.doi: 10.1016/j.wavemoti.2015.05.006. |
[89] |
T. Walsh and M. Torres, Finite element methods for nonlinear acoustics in fluids, J. Comput. Acoust., 15 (2007), 353-375.doi: 10.1142/S0218396X0700338X. |
[90] |
D. Wei and P. Jordan, A note on acoustic propagation in power-law fluids: Compact kinks, mild discontinuities, and a connection to finite-scale theory, International Journal of Non-Linear Mechanics, 48 (2013), 72-77.doi: 10.1016/j.ijnonlinmec.2012.07.006. |
[91] |
P. J. Westervelt, Parametric acoustic array, The Journal of the Acoustic Society of America, 35 (1963), 535-537.doi: 10.1121/1.1918525. |
[92] |
E. A. Zabolotskaya and R. V. Khokhlov, Quasi-plane waves in the non-linear acoustics of confined beams, Soviet Physics-Acoustics, 15 (1969), 35-40. |