December  2015, 4(4): 493-505. doi: 10.3934/eect.2015.4.493

Stability of nonlinear differential systems with delay

1. 

Vietnam National University-HCMC, International University, Department of Mathematics, Saigon, Vietnam

Received  December 2014 Revised  October 2015 Published  November 2015

General nonlinear time-varying differential systems with delay are considered. Several new explicit criteria for exponential stability are given. A discussion of the obtained results and two illustrative examples are presented.
Citation: Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations & Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493
References:
[1]

R. Bellman and K. L. Cooke, Differential Difference Equations,, The Rand Corporation USA, (1963). Google Scholar

[2]

J. Cao and L. Wang, Exponential stability and periodic oscillatory solution in BAM networks with delays,, IEEE Transactions on Neural Networks, 13 (2002), 457. Google Scholar

[3]

S. Dashkovskiy and L. Naujok, Lyapunov-Razumikhin and Lyapunov-Krasovskii theorems for interconnected ISS time-delay systems,, in Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems, (2010), 5. Google Scholar

[4]

J. Dieudonné, Foundations of Modern Analysis,, Academic Press, (1969). Google Scholar

[5]

R. D. Driver, Existence and stability of solutions of a delay differential system,, Archive for Rational Mechanics and Analysis, 10 (1962), 401. doi: 10.1007/BF00281203. Google Scholar

[6]

E. Fridman, New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems,, Systems & Control Letters, 43 (2001), 309. doi: 10.1016/S0167-6911(01)00114-1. Google Scholar

[7]

A. Goubet Bartholoms, M. Dambrine and J. P. Richard, Stability of perturbed systems with time-varying delays,, Systems & Control Letters, 31 (1997), 155. doi: 10.1016/S0167-6911(97)00032-7. Google Scholar

[8]

W. M. Haddad, V. Chellaboina and Q. Hui, Nonnegative and Compartmental Dynamical Systems,, Princeton University Press, (2010). doi: 10.1515/9781400832248. Google Scholar

[9]

J. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations,, Springer-Verlag Berlin, (1993). doi: 10.1007/978-1-4612-4342-7. Google Scholar

[10]

L. Huang, C. Huang and B. Liu, Dynamics of a class of cellular neural networks with time-varying delays,, Physics Letters A, 345 (2005), 330. doi: 10.1016/j.physleta.2005.07.039. Google Scholar

[11]

L. Idels and M. Kipnis, Stability criteria for a nonlinear nonautonomous system with delays,, Applied Mathematical Modelling, 33 (2009), 2293. doi: 10.1016/j.apm.2008.06.005. Google Scholar

[12]

V. B. Kolmanovskii and V. R. Nosov, Stability of Functional Differential Equations,, Academic Press, (1986). Google Scholar

[13]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics,, Mathematics in Science and Engineering, (1993). Google Scholar

[14]

C. H. Li and S. Yang, Global attractivity in delayed Cohen-Grossberg neural network models,, Chaos, 39 (2009), 1975. doi: 10.1016/j.chaos.2007.06.064. Google Scholar

[15]

X. Liu, W. Yu and L. Wang, Stability analysis for continuous-time positive systems with time-varying delays,, IEEE Transactions on Automatic Control, 55 (2010), 1024. doi: 10.1109/TAC.2010.2041982. Google Scholar

[16]

W. Ma, Y. Saito and Y. Takeuchi, M-matrix structure and harmless delays in a Hopfield-type neural network,, Applied Mathematics Letters, 22 (2009), 1066. doi: 10.1016/j.aml.2009.01.025. Google Scholar

[17]

P. H. A. Ngoc, On positivity and stability of linear Volterra systems with delay,, SIAM Journal on Control and Optimization, 48 (2009), 1939. doi: 10.1137/080740040. Google Scholar

[18]

P. H. A. Ngoc, On exponential stability of nonlinear differential systems with time-varying delay,, Applied Mathematics Letters, 25 (2012), 1208. doi: 10.1016/j.aml.2012.02.041. Google Scholar

[19]

P. H. A. Ngoc and L. T. Hieu, New criteria for exponential stability of nonlinear difference systems with time-varying delay,, International Journal of Control, 86 (2013), 1646. doi: 10.1080/00207179.2013.792004. Google Scholar

[20]

W. Rudin, Principles of Mathematical Analysis,, McGraw-Hill Science, (1976). Google Scholar

[21]

H. Smith, An Introduction to Delay Differential Equations with Sciences Applications to the Life,, Texts in Applied Mathematics, (2011). doi: 10.1007/978-1-4419-7646-8. Google Scholar

[22]

N. K. Son and D. Hinrichsen, Robust stability of positive continuous-time systems,, Numer. Funct. Anal. Optim., 17 (1996), 649. doi: 10.1080/01630569608816716. Google Scholar

[23]

S. Xueli and P. Jigen, A novel approach to exponential stability of nonlinear systems with time-varying delays,, Journal of Computational and Applied Mathematics, 235 (2011), 1700. doi: 10.1016/j.cam.2010.09.011. Google Scholar

[24]

F. Wang, Exponential asymptotic stability for nonlinear neutral systems with multiple delays,, Nonlinear Analysis: Real World Applications, 8 (2007), 312. doi: 10.1016/j.nonrwa.2005.07.006. Google Scholar

[25]

J. Zhang, Globally exponential stability of neural networks with variable delays,, IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 50 (2003), 288. doi: 10.1109/TCSI.2002.808208. Google Scholar

[26]

B. Zhang, J. Lam, S. Xu and Z. Shu, Absolute exponential stability criteria for a class of nonlinear time-delay systems,, Nonlinear Analysis: Real World Applications, 11 (2010), 1963. doi: 10.1016/j.nonrwa.2009.04.018. Google Scholar

show all references

References:
[1]

R. Bellman and K. L. Cooke, Differential Difference Equations,, The Rand Corporation USA, (1963). Google Scholar

[2]

J. Cao and L. Wang, Exponential stability and periodic oscillatory solution in BAM networks with delays,, IEEE Transactions on Neural Networks, 13 (2002), 457. Google Scholar

[3]

S. Dashkovskiy and L. Naujok, Lyapunov-Razumikhin and Lyapunov-Krasovskii theorems for interconnected ISS time-delay systems,, in Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems, (2010), 5. Google Scholar

[4]

J. Dieudonné, Foundations of Modern Analysis,, Academic Press, (1969). Google Scholar

[5]

R. D. Driver, Existence and stability of solutions of a delay differential system,, Archive for Rational Mechanics and Analysis, 10 (1962), 401. doi: 10.1007/BF00281203. Google Scholar

[6]

E. Fridman, New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems,, Systems & Control Letters, 43 (2001), 309. doi: 10.1016/S0167-6911(01)00114-1. Google Scholar

[7]

A. Goubet Bartholoms, M. Dambrine and J. P. Richard, Stability of perturbed systems with time-varying delays,, Systems & Control Letters, 31 (1997), 155. doi: 10.1016/S0167-6911(97)00032-7. Google Scholar

[8]

W. M. Haddad, V. Chellaboina and Q. Hui, Nonnegative and Compartmental Dynamical Systems,, Princeton University Press, (2010). doi: 10.1515/9781400832248. Google Scholar

[9]

J. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations,, Springer-Verlag Berlin, (1993). doi: 10.1007/978-1-4612-4342-7. Google Scholar

[10]

L. Huang, C. Huang and B. Liu, Dynamics of a class of cellular neural networks with time-varying delays,, Physics Letters A, 345 (2005), 330. doi: 10.1016/j.physleta.2005.07.039. Google Scholar

[11]

L. Idels and M. Kipnis, Stability criteria for a nonlinear nonautonomous system with delays,, Applied Mathematical Modelling, 33 (2009), 2293. doi: 10.1016/j.apm.2008.06.005. Google Scholar

[12]

V. B. Kolmanovskii and V. R. Nosov, Stability of Functional Differential Equations,, Academic Press, (1986). Google Scholar

[13]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics,, Mathematics in Science and Engineering, (1993). Google Scholar

[14]

C. H. Li and S. Yang, Global attractivity in delayed Cohen-Grossberg neural network models,, Chaos, 39 (2009), 1975. doi: 10.1016/j.chaos.2007.06.064. Google Scholar

[15]

X. Liu, W. Yu and L. Wang, Stability analysis for continuous-time positive systems with time-varying delays,, IEEE Transactions on Automatic Control, 55 (2010), 1024. doi: 10.1109/TAC.2010.2041982. Google Scholar

[16]

W. Ma, Y. Saito and Y. Takeuchi, M-matrix structure and harmless delays in a Hopfield-type neural network,, Applied Mathematics Letters, 22 (2009), 1066. doi: 10.1016/j.aml.2009.01.025. Google Scholar

[17]

P. H. A. Ngoc, On positivity and stability of linear Volterra systems with delay,, SIAM Journal on Control and Optimization, 48 (2009), 1939. doi: 10.1137/080740040. Google Scholar

[18]

P. H. A. Ngoc, On exponential stability of nonlinear differential systems with time-varying delay,, Applied Mathematics Letters, 25 (2012), 1208. doi: 10.1016/j.aml.2012.02.041. Google Scholar

[19]

P. H. A. Ngoc and L. T. Hieu, New criteria for exponential stability of nonlinear difference systems with time-varying delay,, International Journal of Control, 86 (2013), 1646. doi: 10.1080/00207179.2013.792004. Google Scholar

[20]

W. Rudin, Principles of Mathematical Analysis,, McGraw-Hill Science, (1976). Google Scholar

[21]

H. Smith, An Introduction to Delay Differential Equations with Sciences Applications to the Life,, Texts in Applied Mathematics, (2011). doi: 10.1007/978-1-4419-7646-8. Google Scholar

[22]

N. K. Son and D. Hinrichsen, Robust stability of positive continuous-time systems,, Numer. Funct. Anal. Optim., 17 (1996), 649. doi: 10.1080/01630569608816716. Google Scholar

[23]

S. Xueli and P. Jigen, A novel approach to exponential stability of nonlinear systems with time-varying delays,, Journal of Computational and Applied Mathematics, 235 (2011), 1700. doi: 10.1016/j.cam.2010.09.011. Google Scholar

[24]

F. Wang, Exponential asymptotic stability for nonlinear neutral systems with multiple delays,, Nonlinear Analysis: Real World Applications, 8 (2007), 312. doi: 10.1016/j.nonrwa.2005.07.006. Google Scholar

[25]

J. Zhang, Globally exponential stability of neural networks with variable delays,, IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 50 (2003), 288. doi: 10.1109/TCSI.2002.808208. Google Scholar

[26]

B. Zhang, J. Lam, S. Xu and Z. Shu, Absolute exponential stability criteria for a class of nonlinear time-delay systems,, Nonlinear Analysis: Real World Applications, 11 (2010), 1963. doi: 10.1016/j.nonrwa.2009.04.018. Google Scholar

[1]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[2]

Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6123-6138. doi: 10.3934/dcds.2017263

[3]

Mokhtar Kirane, Belkacem Said-Houari, Mohamed Naim Anwar. Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks. Communications on Pure & Applied Analysis, 2011, 10 (2) : 667-686. doi: 10.3934/cpaa.2011.10.667

[4]

Yangzi Hu, Fuke Wu. The improved results on the stochastic Kolmogorov system with time-varying delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1481-1497. doi: 10.3934/dcdsb.2015.20.1481

[5]

Zhen Zhang, Jianhua Huang, Xueke Pu. Pullback attractors of FitzHugh-Nagumo system on the time-varying domains. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3691-3706. doi: 10.3934/dcdsb.2017150

[6]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

[7]

Eugenii Shustin. Exponential decay of oscillations in a multidimensional delay differential system. Conference Publications, 2003, 2003 (Special) : 809-816. doi: 10.3934/proc.2003.2003.809

[8]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

[9]

Serge Nicaise, Julie Valein, Emilia Fridman. Stability of the heat and of the wave equations with boundary time-varying delays. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 559-581. doi: 10.3934/dcdss.2009.2.559

[10]

Di Wu, Yanqin Bai, Fusheng Xie. Time-scaling transformation for optimal control problem with time-varying delay. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020098

[11]

Dinh Cong Huong, Mai Viet Thuan. State transformations of time-varying delay systems and their applications to state observer design. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 413-444. doi: 10.3934/dcdss.2017020

[12]

K. Aruna Sakthi, A. Vinodkumar. Stabilization on input time-varying delay for linear switched systems with truncated predictor control. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019050

[13]

Lijuan Wang, Yashan Xu. Admissible controls and controllable sets for a linear time-varying ordinary differential equation. Mathematical Control & Related Fields, 2018, 8 (3&4) : 1001-1019. doi: 10.3934/mcrf.2018043

[14]

István Győri, Ferenc Hartung, Nahed A. Mohamady. Boundedness of positive solutions of a system of nonlinear delay differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 809-836. doi: 10.3934/dcdsb.2018044

[15]

Wei Feng, Xin Lu. Global stability in a class of reaction-diffusion systems with time-varying delays. Conference Publications, 1998, 1998 (Special) : 253-261. doi: 10.3934/proc.1998.1998.253

[16]

Lizhao Yan, Fei Xu, Yongzeng Lai, Mingyong Lai. Stability strategies of manufacturing-inventory systems with unknown time-varying demand. Journal of Industrial & Management Optimization, 2017, 13 (4) : 2033-2047. doi: 10.3934/jimo.2017030

[17]

Wenjun Liu, Biqing Zhu, Gang Li, Danhua Wang. General decay for a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term. Evolution Equations & Control Theory, 2017, 6 (2) : 239-260. doi: 10.3934/eect.2017013

[18]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[19]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[20]

Hichem Kasri, Amar Heminna. Exponential stability of a coupled system with Wentzell conditions. Evolution Equations & Control Theory, 2016, 5 (2) : 235-250. doi: 10.3934/eect.2016003

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]