December  2015, 4(4): 507-524. doi: 10.3934/eect.2015.4.507

Controllability for fractional evolution inclusions without compactness

1. 

School of Mathematics and Computational Science, Xiangtan University, Hunan 411105, China

2. 

Department of Mathematics, Info Institute of Engineering, Kovilpalayam, Coimbatore - 641 107Tamil Nadu, India

3. 

Department of Mathematics, SRMV College of Arts and Science, Coimbatore - 641 020, Tamil Nadu, India

Received  August 2015 Revised  October 2015 Published  November 2015

In this paper, we study the existence and controllability for fractional evolution inclusions in Banach spaces. We use a new approach to obtain the existence of mild solutions and controllability results, avoiding hypotheses of compactness on the semigroup generated by the linear part and any conditions on the multivalued nonlinearity expressed in terms of measures of noncompactness. Finally, two examples are given to illustrate our theoretical results.
Citation: Yong Zhou, V. Vijayakumar, R. Murugesu. Controllability for fractional evolution inclusions without compactness. Evolution Equations & Control Theory, 2015, 4 (4) : 507-524. doi: 10.3934/eect.2015.4.507
References:
[1]

P. R. Agarwal, M. Belmekki and M. Benchohra, Existence results for semilinear functional differential inclusions involving Riemann-Liouville fractional derivative,, Dynamics of Continuous, 17 (2010), 347.   Google Scholar

[2]

I. Benedetti, V. Obukhovskii and V. Taddei, Controllability for systems governed by semilinear evolution inclusions without compactness,, Nonlinear Differential Equations and Applications, 21 (2014), 795.  doi: 10.1007/s00030-014-0267-0.  Google Scholar

[3]

I. Benedetti, L. Malaguti and V. Taddei, Semilinear evolution equations in abstract spaces and applications,, Rendiconti dell'Istituto di Matematica dell'Università di Trieste, 44 (2012), 371.   Google Scholar

[4]

S. Bochner and A. E. Taylor, Linear functionals on certain spaces of abstractly valued functions,, Annals of Mathematics, 39 (1938), 913.  doi: 10.2307/1968472.  Google Scholar

[5]

H. Brezis, Analyse Fonctionelle, Théorie et Applications,, Masson Editeur, (1983).   Google Scholar

[6]

K. Diethelm, The Analysis of Fractional Differential Equations,, Lecture Notes in Mathematics, (2010).  doi: 10.1007/978-3-642-14574-2.  Google Scholar

[7]

N. Dunford and J. T. Schwartz, Linear Operators,, John Wiley and Sons, (1988).   Google Scholar

[8]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations,, Journal of Differential Equations, 199 (2004), 211.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[9]

I. Ekeland and R. Teman, Convex Anaysis and Variational Problems,, North Holland, (1976).   Google Scholar

[10]

K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Graduate Texts in Mathematics, (2000).   Google Scholar

[11]

M. Fečkan, J. R. Wang and Y. Zhou, Controllability of fractional evolution equations of Sobolev type via characteristic solution,, Journal of Optimization Theory and Applications, 156 (2013), 79.  doi: 10.1007/s10957-012-0174-7.  Google Scholar

[12]

M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces,, de Gruyter Series in Nonlinear Analysis and Applications, (2001).  doi: 10.1515/9783110870893.  Google Scholar

[13]

L. V. Kantorovich and G. P. Akilov, Functional Analysis,, Pergamon Press, (1982).   Google Scholar

[14]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,, Elsevier, (2006).   Google Scholar

[15]

M. Krasnoschok and N. Vasylyeva, On a non classical fractional boundary-value problem for the Laplace operator,, Journal of Differential Equations, 257 (2014), 1814.  doi: 10.1016/j.jde.2014.05.022.  Google Scholar

[16]

Z. Liu, J. Lv and R. Sakthivel, Approximate controllability of fractional functional evolution inclusions with delay in Hilbert spaces,, IMA Journal of Mathematical Control and Information, 31 (2014), 363.  doi: 10.1093/imamci/dnt015.  Google Scholar

[17]

J. A. Machado, C. Ravichandran, M. Rivero and J. J. Trujillo, Controllability results for impulsive mixed-type functional integro-differential evolution equations with nonlocal conditions,, Fixed Point Theory and Applications, 66 (2013), 1.  doi: 10.1186/1687-1812-2013-66.  Google Scholar

[18]

D. O'Regan, Fixed point theorems for weakly sequentially closed maps,, Archivum Mathematicum, 36 (2000), 61.   Google Scholar

[19]

B. J. Pettis, On the integration in vector spaces,, Transactions of the American Mathematical Society, 44 (1938), 277.  doi: 10.1090/S0002-9947-1938-1501970-8.  Google Scholar

[20]

I. Podlubny, Fractional Differential Equations,, Academic Press, (1999).   Google Scholar

[21]

R. Ponce, Hölder continuous solutions for fractional differential equations and maximal regularity,, Journal of Differential Equations, 255 (2013), 3284.  doi: 10.1016/j.jde.2013.07.035.  Google Scholar

[22]

L. Schwartz, Cours d'Analyse I,, 2nd ed. Hermann, (1981).   Google Scholar

[23]

V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media,, Springer, (2010).  doi: 10.1007/978-3-642-14003-7.  Google Scholar

[24]

J. Wang and Y. Zhou, Existence and controllability results for fractional semilinear differential inclusions,, Nonlinear Analysis: Real World Analysis, 12 (2011), 3642.  doi: 10.1016/j.nonrwa.2011.06.021.  Google Scholar

[25]

R. N. Wang, D. H. Chen and Ti-Jun Xiao, Abstract fractional Cauchy problems with almost sectorial operators,, Journal of Differential Equations, 252 (2012), 202.  doi: 10.1016/j.jde.2011.08.048.  Google Scholar

[26]

R. N. Wang, Q. M. Xiang and P. X. Zhu, Existence and approximate controllability for systems governed by fractional delay evolution inclusions,, Optimization, 63 (2014), 1191.  doi: 10.1080/02331934.2014.917303.  Google Scholar

[27]

V. Vijayakumar, C. Ravichandran and R. Murugesu, Existence of mild solutions for nonlocal Cauchy problem for fractional neutral evolution equations with infinite delay,, Surveys in Mathematics and its Applications 9 (2014), 9 (2014), 117.   Google Scholar

[28]

V. Vijayakumar, C. Ravichandran and R. Murugesu, Nonlocal controllability of mixed Volterra-Fredholm type fractional semilinear integro-differential inclusions in Banach spaces,, Dynamics of Continuous, 20 (2013), 485.   Google Scholar

[29]

L. Zhang and Y. Zhou, Fractional Cauchy problems with almost sectorial operators,, Applied Mathematics and Computation, 257 (2015), 145.  doi: 10.1016/j.amc.2014.07.024.  Google Scholar

[30]

Y. Zhou, Basic Theory of Fractional Differential Equations,, World Scientific, (2014).  doi: 10.1142/9069.  Google Scholar

[31]

Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control,, Elsevier & Academic Press, (2015).   Google Scholar

[32]

Y. Zhou, L. Zhang and X. H. Shen, Existence of mild solutions for fractional evolution equations,, Journal of Integral Equations and Applications, 25 (2013), 557.  doi: 10.1216/JIE-2013-25-4-557.  Google Scholar

[33]

Y. Zhou and F. Jiao, Nonlocal Cauchy problem for fractional evolution equations,, Nonlinear Analysis, 11 (2010), 4465.  doi: 10.1016/j.nonrwa.2010.05.029.  Google Scholar

show all references

References:
[1]

P. R. Agarwal, M. Belmekki and M. Benchohra, Existence results for semilinear functional differential inclusions involving Riemann-Liouville fractional derivative,, Dynamics of Continuous, 17 (2010), 347.   Google Scholar

[2]

I. Benedetti, V. Obukhovskii and V. Taddei, Controllability for systems governed by semilinear evolution inclusions without compactness,, Nonlinear Differential Equations and Applications, 21 (2014), 795.  doi: 10.1007/s00030-014-0267-0.  Google Scholar

[3]

I. Benedetti, L. Malaguti and V. Taddei, Semilinear evolution equations in abstract spaces and applications,, Rendiconti dell'Istituto di Matematica dell'Università di Trieste, 44 (2012), 371.   Google Scholar

[4]

S. Bochner and A. E. Taylor, Linear functionals on certain spaces of abstractly valued functions,, Annals of Mathematics, 39 (1938), 913.  doi: 10.2307/1968472.  Google Scholar

[5]

H. Brezis, Analyse Fonctionelle, Théorie et Applications,, Masson Editeur, (1983).   Google Scholar

[6]

K. Diethelm, The Analysis of Fractional Differential Equations,, Lecture Notes in Mathematics, (2010).  doi: 10.1007/978-3-642-14574-2.  Google Scholar

[7]

N. Dunford and J. T. Schwartz, Linear Operators,, John Wiley and Sons, (1988).   Google Scholar

[8]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations,, Journal of Differential Equations, 199 (2004), 211.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[9]

I. Ekeland and R. Teman, Convex Anaysis and Variational Problems,, North Holland, (1976).   Google Scholar

[10]

K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Graduate Texts in Mathematics, (2000).   Google Scholar

[11]

M. Fečkan, J. R. Wang and Y. Zhou, Controllability of fractional evolution equations of Sobolev type via characteristic solution,, Journal of Optimization Theory and Applications, 156 (2013), 79.  doi: 10.1007/s10957-012-0174-7.  Google Scholar

[12]

M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces,, de Gruyter Series in Nonlinear Analysis and Applications, (2001).  doi: 10.1515/9783110870893.  Google Scholar

[13]

L. V. Kantorovich and G. P. Akilov, Functional Analysis,, Pergamon Press, (1982).   Google Scholar

[14]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,, Elsevier, (2006).   Google Scholar

[15]

M. Krasnoschok and N. Vasylyeva, On a non classical fractional boundary-value problem for the Laplace operator,, Journal of Differential Equations, 257 (2014), 1814.  doi: 10.1016/j.jde.2014.05.022.  Google Scholar

[16]

Z. Liu, J. Lv and R. Sakthivel, Approximate controllability of fractional functional evolution inclusions with delay in Hilbert spaces,, IMA Journal of Mathematical Control and Information, 31 (2014), 363.  doi: 10.1093/imamci/dnt015.  Google Scholar

[17]

J. A. Machado, C. Ravichandran, M. Rivero and J. J. Trujillo, Controllability results for impulsive mixed-type functional integro-differential evolution equations with nonlocal conditions,, Fixed Point Theory and Applications, 66 (2013), 1.  doi: 10.1186/1687-1812-2013-66.  Google Scholar

[18]

D. O'Regan, Fixed point theorems for weakly sequentially closed maps,, Archivum Mathematicum, 36 (2000), 61.   Google Scholar

[19]

B. J. Pettis, On the integration in vector spaces,, Transactions of the American Mathematical Society, 44 (1938), 277.  doi: 10.1090/S0002-9947-1938-1501970-8.  Google Scholar

[20]

I. Podlubny, Fractional Differential Equations,, Academic Press, (1999).   Google Scholar

[21]

R. Ponce, Hölder continuous solutions for fractional differential equations and maximal regularity,, Journal of Differential Equations, 255 (2013), 3284.  doi: 10.1016/j.jde.2013.07.035.  Google Scholar

[22]

L. Schwartz, Cours d'Analyse I,, 2nd ed. Hermann, (1981).   Google Scholar

[23]

V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media,, Springer, (2010).  doi: 10.1007/978-3-642-14003-7.  Google Scholar

[24]

J. Wang and Y. Zhou, Existence and controllability results for fractional semilinear differential inclusions,, Nonlinear Analysis: Real World Analysis, 12 (2011), 3642.  doi: 10.1016/j.nonrwa.2011.06.021.  Google Scholar

[25]

R. N. Wang, D. H. Chen and Ti-Jun Xiao, Abstract fractional Cauchy problems with almost sectorial operators,, Journal of Differential Equations, 252 (2012), 202.  doi: 10.1016/j.jde.2011.08.048.  Google Scholar

[26]

R. N. Wang, Q. M. Xiang and P. X. Zhu, Existence and approximate controllability for systems governed by fractional delay evolution inclusions,, Optimization, 63 (2014), 1191.  doi: 10.1080/02331934.2014.917303.  Google Scholar

[27]

V. Vijayakumar, C. Ravichandran and R. Murugesu, Existence of mild solutions for nonlocal Cauchy problem for fractional neutral evolution equations with infinite delay,, Surveys in Mathematics and its Applications 9 (2014), 9 (2014), 117.   Google Scholar

[28]

V. Vijayakumar, C. Ravichandran and R. Murugesu, Nonlocal controllability of mixed Volterra-Fredholm type fractional semilinear integro-differential inclusions in Banach spaces,, Dynamics of Continuous, 20 (2013), 485.   Google Scholar

[29]

L. Zhang and Y. Zhou, Fractional Cauchy problems with almost sectorial operators,, Applied Mathematics and Computation, 257 (2015), 145.  doi: 10.1016/j.amc.2014.07.024.  Google Scholar

[30]

Y. Zhou, Basic Theory of Fractional Differential Equations,, World Scientific, (2014).  doi: 10.1142/9069.  Google Scholar

[31]

Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control,, Elsevier & Academic Press, (2015).   Google Scholar

[32]

Y. Zhou, L. Zhang and X. H. Shen, Existence of mild solutions for fractional evolution equations,, Journal of Integral Equations and Applications, 25 (2013), 557.  doi: 10.1216/JIE-2013-25-4-557.  Google Scholar

[33]

Y. Zhou and F. Jiao, Nonlocal Cauchy problem for fractional evolution equations,, Nonlinear Analysis, 11 (2010), 4465.  doi: 10.1016/j.nonrwa.2010.05.029.  Google Scholar

[1]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[2]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[3]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

[4]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[5]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[6]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[7]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[8]

Michael Schmidt, Emmanuel Trélat. Controllability of couette flows. Communications on Pure & Applied Analysis, 2006, 5 (1) : 201-211. doi: 10.3934/cpaa.2006.5.201

[9]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[10]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[11]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[12]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[13]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[14]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[15]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[16]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[17]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[18]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[19]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[20]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (193)
  • HTML views (0)
  • Cited by (78)

Other articles
by authors

[Back to Top]