March  2015, 4(1): 61-67. doi: 10.3934/eect.2015.4.61

Local boundedness property for parabolic BVP's and the Gaussian upper bound for their Green functions

1. 

Institut Élie Cartan de Lorraine, UMR CNRS 7502, Université de Lorraine-Metz, Ile du Saulcy, F-57045 Metz cedex 1, France

Received  March 2014 Revised  January 2015 Published  February 2015

In the present note, we give a concise proof for the equivalence between the local boundedness property for parabolic Dirichlet BVP's and the gaussian upper bound for their Green functions. The parabolic equations we consider are of general divergence form and our proof is essentially based on the gaussian upper bound by Daners [2] and a Caccioppoli's type inequality. We also show how the same analysis enables us to get a weaker version of the local boundedness property for parabolic Neumann BVP's assuming that the corresponding Green functions satisfy a gaussian upper bound.
Citation: Mourad Choulli. Local boundedness property for parabolic BVP's and the Gaussian upper bound for their Green functions. Evolution Equations & Control Theory, 2015, 4 (1) : 61-67. doi: 10.3934/eect.2015.4.61
References:
[1]

J. Choi and S. Kim, Green's function for second order parabolic systems with Neumann boundary condition,, J. Diffent. Equat., 254 (2013), 2834. doi: 10.1016/j.jde.2013.01.003. Google Scholar

[2]

D. Daners, Heat Kernel estimates for operators with boundary conditions,, Math Nachr., 217 (2000), 13. doi: 10.1002/1522-2616(200009)217:1<13::AID-MANA13>3.0.CO;2-6. Google Scholar

[3]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 5,, Springer-Verlag, (1992). doi: 10.1007/978-3-642-58090-1. Google Scholar

[4]

S. Hofmann and S. Kim, Gaussian estimates for fundamental solutions to certain parabolic systems,, Publ. Mat., 48 (2004), 481. doi: 10.5565/PUBLMAT_48204_10. Google Scholar

show all references

References:
[1]

J. Choi and S. Kim, Green's function for second order parabolic systems with Neumann boundary condition,, J. Diffent. Equat., 254 (2013), 2834. doi: 10.1016/j.jde.2013.01.003. Google Scholar

[2]

D. Daners, Heat Kernel estimates for operators with boundary conditions,, Math Nachr., 217 (2000), 13. doi: 10.1002/1522-2616(200009)217:1<13::AID-MANA13>3.0.CO;2-6. Google Scholar

[3]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 5,, Springer-Verlag, (1992). doi: 10.1007/978-3-642-58090-1. Google Scholar

[4]

S. Hofmann and S. Kim, Gaussian estimates for fundamental solutions to certain parabolic systems,, Publ. Mat., 48 (2004), 481. doi: 10.5565/PUBLMAT_48204_10. Google Scholar

[1]

Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207

[2]

Peter Bella, Arianna Giunti. Green's function for elliptic systems: Moment bounds. Networks & Heterogeneous Media, 2018, 13 (1) : 155-176. doi: 10.3934/nhm.2018007

[3]

Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791

[4]

Sungwon Cho. Alternative proof for the existence of Green's function. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1307-1314. doi: 10.3934/cpaa.2011.10.1307

[5]

Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201

[6]

Sándor Kelemen, Pavol Quittner. Boundedness and a priori estimates of solutions to elliptic systems with Dirichlet-Neumann boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (3) : 731-740. doi: 10.3934/cpaa.2010.9.731

[7]

Jeremiah Birrell. A posteriori error bounds for two point boundary value problems: A green's function approach. Journal of Computational Dynamics, 2015, 2 (2) : 143-164. doi: 10.3934/jcd.2015001

[8]

Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501

[9]

Dmitry Jakobson and Iosif Polterovich. Lower bounds for the spectral function and for the remainder in local Weyl's law on manifolds. Electronic Research Announcements, 2005, 11: 71-77.

[10]

Liping Zhang, Soon-Yi Wu, Shu-Cherng Fang. Convergence and error bound of a D-gap function based Newton-type algorithm for equilibrium problems. Journal of Industrial & Management Optimization, 2010, 6 (2) : 333-346. doi: 10.3934/jimo.2010.6.333

[11]

Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems & Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487

[12]

Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure & Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098

[13]

Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure & Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011

[14]

Barbara Brandolini, Francesco Chiacchio, Cristina Trombetti. Hardy type inequalities and Gaussian measure. Communications on Pure & Applied Analysis, 2007, 6 (2) : 411-428. doi: 10.3934/cpaa.2007.6.411

[15]

Robert Carlson. Dirichlet to Neumann maps for infinite quantum graphs. Networks & Heterogeneous Media, 2012, 7 (3) : 483-501. doi: 10.3934/nhm.2012.7.483

[16]

Shouchuan Hu, Nikolaos S. Papageorgiou. Solutions of nonlinear nonhomogeneous Neumann and Dirichlet problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2889-2922. doi: 10.3934/cpaa.2013.12.2889

[17]

Zhi-Min Chen. Straightforward approximation of the translating and pulsating free surface Green function. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2767-2783. doi: 10.3934/dcdsb.2014.19.2767

[18]

Claudia Bucur. Some observations on the Green function for the ball in the fractional Laplace framework. Communications on Pure & Applied Analysis, 2016, 15 (2) : 657-699. doi: 10.3934/cpaa.2016.15.657

[19]

Alain Miranville, Xiaoming Wang. Upper bound on the dimension of the attractor for nonhomogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 95-110. doi: 10.3934/dcds.1996.2.95

[20]

Gang Meng. The optimal upper bound for the first eigenvalue of the fourth order equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6369-6382. doi: 10.3934/dcds.2017276

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]