March  2016, 5(1): 135-145. doi: 10.3934/eect.2016.5.135

The energy conservation for weak solutions to the relativistic Nordström-Vlasov system

1. 

School of Automation, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

Received  October 2015 Revised  January 2016 Published  March 2016

We study the Cauchy problem of the relativistic Nordström-Vlasov system. Under some additional conditions, total energy for weak solutions with BV scalar field are shown to be conserved.
Citation: Xiuting Li. The energy conservation for weak solutions to the relativistic Nordström-Vlasov system. Evolution Equations & Control Theory, 2016, 5 (1) : 135-145. doi: 10.3934/eect.2016.5.135
References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity,, Inc. NY, (2000). Google Scholar

[2]

F. Bouchut, Renormalized solutions to the Vlasov equation with coefficients of bounded variation,, Arch. Rational Mech. Anal., 157 (2001), 75. doi: 10.1007/PL00004237. Google Scholar

[3]

F. Bouchut, F. Golse and C. Pallard, Nonresonant smoothing for coupled wave + transport equations and the Vlasov-Maxwell system,, Rev. Mat.Iberoamericana., 20 (2004), 865. doi: 10.4171/RMI/409. Google Scholar

[4]

S. Calogero and G. Rein, Global weak solutions to the Nordström-Vlasov system,, J. Differential Equations., 204 (2004), 323. doi: 10.1016/j.jde.2004.02.011. Google Scholar

[5]

S. Calogero, Global classical solutions to the 3D Nordström-Vlasov system,, Commun. Math. Phys., 266 (2006), 343. doi: 10.1007/s00220-006-0029-x. Google Scholar

[6]

S. Calogero, Spherically symmetric steady states of galactic dynamics in scalar gravity,, Class. Quantum Grav., 20 (2003), 1729. doi: 10.1088/0264-9381/20/9/310. Google Scholar

[7]

S. Calogero and G. Rein, On classical solutions of the Nordström-Vlasov system,, Comm. Partial Diff. Eqs., 28 (2003), 1863. doi: 10.1081/PDE-120025488. Google Scholar

[8]

R. J. Diperna and P.-L. Lions, Global weak solutions of Vlasov-Mxwell systems,, Comm. Pure Appl. Math., 42 (1989), 729. doi: 10.1002/cpa.3160420603. Google Scholar

[9]

R. J. Diperna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces,, Amer. Math. Soc., 98 (1989), 511. doi: 10.1007/BF01393835. Google Scholar

[10]

L. C. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics,, American Mathematical Society, (1998). Google Scholar

[11]

S. Friedrich, Global small solutions of the Vlasov-Nordström system,, preprint, (). Google Scholar

[12]

P.-L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system,, Invent. Math., 105 (1991), 415. doi: 10.1007/BF01232273. Google Scholar

[13]

G. Loeper, Uniqueness of the solution to Vlasov-Poisson system with bounded density,, J. Math. Pures Appl., 86 (2006), 68. doi: 10.1016/j.matpur.2006.01.005. Google Scholar

[14]

E. Miot, A uniqueness criterion for unbounded solutions to the Vlaosv-Poisson system,, , (). Google Scholar

[15]

C. Pallard, On global smooth solutions to the 3D Vlasov-Nordström system,, Ann. I. H. Poincaré, 23 (2006), 85. doi: 10.1016/j.anihpc.2005.02.001. Google Scholar

[16]

G. Rein, Global weak solutions to the relativistic Vlasov-Maxwell system revisted,, Comm. Math. Sci., 2 (2004), 145. doi: 10.4310/CMS.2004.v2.n2.a1. Google Scholar

[17]

G. Rein, Collisionless kinetic equation from astrophysics-the Vlasov-Poisson system,, in: Handbook of Differential Equations: Evolutionary Equations, 3 (2007), 383. doi: 10.1016/S1874-5717(07)80008-9. Google Scholar

[18]

R. Sospedra-Alfonso, On the energy conservation by weak solutions of the relativistic Vlasov-Maxwell system,, Comm. Math. Sci., 8 (2010), 901. doi: 10.4310/CMS.2010.v8.n4.a6. Google Scholar

[19]

S. L. Shapiro and S. A. Teukolsky, Scalar gravitation: A laboratory for numerical relativity,, Phys. Rev. D., 47 (1993), 1529. doi: 10.1103/PhysRevD.47.1529. Google Scholar

show all references

References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity,, Inc. NY, (2000). Google Scholar

[2]

F. Bouchut, Renormalized solutions to the Vlasov equation with coefficients of bounded variation,, Arch. Rational Mech. Anal., 157 (2001), 75. doi: 10.1007/PL00004237. Google Scholar

[3]

F. Bouchut, F. Golse and C. Pallard, Nonresonant smoothing for coupled wave + transport equations and the Vlasov-Maxwell system,, Rev. Mat.Iberoamericana., 20 (2004), 865. doi: 10.4171/RMI/409. Google Scholar

[4]

S. Calogero and G. Rein, Global weak solutions to the Nordström-Vlasov system,, J. Differential Equations., 204 (2004), 323. doi: 10.1016/j.jde.2004.02.011. Google Scholar

[5]

S. Calogero, Global classical solutions to the 3D Nordström-Vlasov system,, Commun. Math. Phys., 266 (2006), 343. doi: 10.1007/s00220-006-0029-x. Google Scholar

[6]

S. Calogero, Spherically symmetric steady states of galactic dynamics in scalar gravity,, Class. Quantum Grav., 20 (2003), 1729. doi: 10.1088/0264-9381/20/9/310. Google Scholar

[7]

S. Calogero and G. Rein, On classical solutions of the Nordström-Vlasov system,, Comm. Partial Diff. Eqs., 28 (2003), 1863. doi: 10.1081/PDE-120025488. Google Scholar

[8]

R. J. Diperna and P.-L. Lions, Global weak solutions of Vlasov-Mxwell systems,, Comm. Pure Appl. Math., 42 (1989), 729. doi: 10.1002/cpa.3160420603. Google Scholar

[9]

R. J. Diperna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces,, Amer. Math. Soc., 98 (1989), 511. doi: 10.1007/BF01393835. Google Scholar

[10]

L. C. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics,, American Mathematical Society, (1998). Google Scholar

[11]

S. Friedrich, Global small solutions of the Vlasov-Nordström system,, preprint, (). Google Scholar

[12]

P.-L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system,, Invent. Math., 105 (1991), 415. doi: 10.1007/BF01232273. Google Scholar

[13]

G. Loeper, Uniqueness of the solution to Vlasov-Poisson system with bounded density,, J. Math. Pures Appl., 86 (2006), 68. doi: 10.1016/j.matpur.2006.01.005. Google Scholar

[14]

E. Miot, A uniqueness criterion for unbounded solutions to the Vlaosv-Poisson system,, , (). Google Scholar

[15]

C. Pallard, On global smooth solutions to the 3D Vlasov-Nordström system,, Ann. I. H. Poincaré, 23 (2006), 85. doi: 10.1016/j.anihpc.2005.02.001. Google Scholar

[16]

G. Rein, Global weak solutions to the relativistic Vlasov-Maxwell system revisted,, Comm. Math. Sci., 2 (2004), 145. doi: 10.4310/CMS.2004.v2.n2.a1. Google Scholar

[17]

G. Rein, Collisionless kinetic equation from astrophysics-the Vlasov-Poisson system,, in: Handbook of Differential Equations: Evolutionary Equations, 3 (2007), 383. doi: 10.1016/S1874-5717(07)80008-9. Google Scholar

[18]

R. Sospedra-Alfonso, On the energy conservation by weak solutions of the relativistic Vlasov-Maxwell system,, Comm. Math. Sci., 8 (2010), 901. doi: 10.4310/CMS.2010.v8.n4.a6. Google Scholar

[19]

S. L. Shapiro and S. A. Teukolsky, Scalar gravitation: A laboratory for numerical relativity,, Phys. Rev. D., 47 (1993), 1529. doi: 10.1103/PhysRevD.47.1529. Google Scholar

[1]

Lan Luo, Hongjun Yu. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinetic & Related Models, 2016, 9 (2) : 393-405. doi: 10.3934/krm.2016.9.393

[2]

Shuangqian Liu, Qinghua Xiao. The relativistic Vlasov-Maxwell-Boltzmann system for short range interaction. Kinetic & Related Models, 2016, 9 (3) : 515-550. doi: 10.3934/krm.2016005

[3]

Mohammad Asadzadeh, Piotr Kowalczyk, Christoffer Standar. On hp-streamline diffusion and Nitsche schemes for the relativistic Vlasov-Maxwell system. Kinetic & Related Models, 2019, 12 (1) : 105-131. doi: 10.3934/krm.2019005

[4]

Stephen Pankavich, Nicholas Michalowski. Global classical solutions for the "One and one-half'' dimensional relativistic Vlasov-Maxwell-Fokker-Planck system. Kinetic & Related Models, 2015, 8 (1) : 169-199. doi: 10.3934/krm.2015.8.169

[5]

Mihai Bostan, Thierry Goudon. Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system; the one and one half dimensional case. Kinetic & Related Models, 2008, 1 (1) : 139-170. doi: 10.3934/krm.2008.1.139

[6]

Hai-Liang Li, Hongjun Yu, Mingying Zhong. Spectrum structure and optimal decay rate of the relativistic Vlasov-Poisson-Landau system. Kinetic & Related Models, 2017, 10 (4) : 1089-1125. doi: 10.3934/krm.2017043

[7]

Dequan Yue, Wuyi Yue. Block-partitioning matrix solution of M/M/R/N queueing system with balking, reneging and server breakdowns. Journal of Industrial & Management Optimization, 2009, 5 (3) : 417-430. doi: 10.3934/jimo.2009.5.417

[8]

Meng Wang, Wendong Wang, Zhifei Zhang. On the uniqueness of weak solution for the 2-D Ericksen--Leslie system. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 919-941. doi: 10.3934/dcdsb.2016.21.919

[9]

Anupam Sen, T. Raja Sekhar. Structural stability of the Riemann solution for a strictly hyperbolic system of conservation laws with flux approximation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 931-942. doi: 10.3934/cpaa.2019045

[10]

Philipp Reiter. Regularity theory for the Möbius energy. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1463-1471. doi: 10.3934/cpaa.2010.9.1463

[11]

Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064

[12]

Robert I. McLachlan, G. R. W. Quispel. Discrete gradient methods have an energy conservation law. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1099-1104. doi: 10.3934/dcds.2014.34.1099

[13]

Sergiu Klainerman, Gigliola Staffilani. A new approach to study the Vlasov-Maxwell system. Communications on Pure & Applied Analysis, 2002, 1 (1) : 103-125. doi: 10.3934/cpaa.2002.1.103

[14]

Katherine Zhiyuan Zhang. Focusing solutions of the Vlasov-Poisson system. Kinetic & Related Models, 2019, 12 (6) : 1313-1327. doi: 10.3934/krm.2019051

[15]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[16]

Juan Calvo. On the hyperbolicity and causality of the relativistic Euler system under the kinetic equation of state. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1341-1347. doi: 10.3934/cpaa.2013.12.1341

[17]

Kazumasa Fujiwara, Shuji Machihara, Tohru Ozawa. On a system of semirelativistic equations in the energy space. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1343-1355. doi: 10.3934/cpaa.2015.14.1343

[18]

Toan T. Nguyen, Truyen V. Nguyen, Walter A. Strauss. Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinetic & Related Models, 2015, 8 (1) : 153-168. doi: 10.3934/krm.2015.8.153

[19]

Robert T. Glassey, Walter A. Strauss. Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 457-472. doi: 10.3934/dcds.1999.5.457

[20]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure & Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]