Citation: |
[1] |
H. Amann, Parabolic evolution equations and nonlinear boundary conditions, J. Differ. Equations, 72 (1988), 201-269.doi: 10.1016/0022-0396(88)90156-8. |
[2] |
H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in: Function spaces, differential operators and nonlinear analysis, (eds. H.-J. Schmeisser et al.), Teubner, Stuttgart, 133 (1993), 9-126.doi: 10.1007/978-3-663-11336-2_1. |
[3] |
H. Amann, Maximal regularity for nonautonomous evolution equations, Adv. Nonlinear Stud., 4 (2004), 417-430. |
[4] |
H. Amann, Linear and Quasilinear Parabolic Problems, Birkhäuser, Basel-Boston-Berlin, 1995.doi: 10.1007/978-3-0348-9221-6. |
[5] |
W. Arendt, D. Dier, H. Laasri and E. M. Ouhabaz, Maximal regularity for evolution equations governed by non-autonomous forms, Adv. Differential Equations, 19 (2014), 1043-1066. |
[6] |
P. Auscher, N. Badr, R. Haller-Dintelmann and J. Rehberg, The square root problem for second order, divergence form operators with mixed boundary conditions on $L^p$, J. Evol. Eq., 15 (2015), 165-208.doi: 10.1007/s00028-014-0255-1. |
[7] |
C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston etc., 1988. |
[8] |
K. Brewster, D. Mitrea, I. Mitrea and M. Mitrea, Extending Sobolev functions with partially vanishing traces from locally $(\epsilon,\delta)$-domains and applications to mixed boundary problems, J. Funct. Anal., 266 (2014), 4314-4421.doi: 10.1016/j.jfa.2014.02.001. |
[9] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.doi: 10.1007/978-0-387-70914-7. |
[10] |
E. Casas, J. C. de los Reyes and F. Tröltzsch, Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints, SIAM J. Control Optim., 19 (2008), 616-643.doi: 10.1137/07068240X. |
[11] |
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam-New York-Oxford, 1978. |
[12] |
R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5: Evolution Problems I, Springer-Verlag, Berlin, 1992.doi: 10.1007/978-3-642-58090-1. |
[13] |
J. C. de los Reyes, P. Merino, J. Rehberg and F. Tröltzsch, Optimality conditions for state-constrained PDE control problems with time-dependent controls, Control Cybernet., 37 (2008), 5-38. |
[14] |
D. Dier, Non-autonomous maximal regularity for forms of bounded variation, J. Math. Anal. Appl., 425 (2015), 33-54.doi: 10.1016/j.jmaa.2014.12.006. |
[15] |
K. Disser, H.-C. Kaiser and J. Rehberg, Optimal Sobolev regularity for linear second-order divergence elliptic operators occuring in real-world problems, SIAM J. Math. Anal., 47 (2015), 1719-1746.doi: 10.1137/140982969. |
[16] |
J. Elschner, J. Rehberg and G. Schmidt, Optimal regularity for elliptic transmission problems including $C^1$ interfaces, Interfaces Free Bound., 9 (2007), 233-252.doi: 10.4171/IFB/163. |
[17] |
A. F. M. ter Elst and J. Rehberg, Hölder estimates for second-order operators on domains with rough boundary, Adv. Differential Equations, 20 (2015), 299-360. |
[18] |
L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in advanced mathematics, CRC Press, Boca Raton-New York-London-Tokyo, 1992. |
[19] |
I. Fonseca and G. Parry, Equilibrium configurations of defective crystals, Arch. Rat. Mech. Anal., 120 (1992), 245-283.doi: 10.1007/BF00375027. |
[20] |
H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974. |
[21] |
Ch. Gallarati and M. Veraar, Maximal regularity for non-autonomous equations with measurable dependence on time, arXiv:1410.6394. |
[22] |
M. Giaquinta and M. Struwe, An optimal regularity result for a class of quasilinear parabolic systems, Manuscr. Math., 36 (1981), 223-239.doi: 10.1007/BF01170135. |
[23] |
E. Giusti, Metodi Diretti nel Calcolo Delle Variazioni, Unione Matematica Italiana, Bologna, 1994. |
[24] |
J. A. Griepentrog, W. Höppner, H.-C. Kaiser and J. Rehberg, A bi-Lipschitz continuous, volume preserving map from the unit ball onto a cube, Note Mat., 28 (2008), 177-193.doi: 10.1285/i15900932v28n1p177. |
[25] |
J. A. Griepentrog, K. Gröger, H. C. Kaiser and J. Rehberg, Interpolation for function spaces related to mixed boundary value problems, Math. Nachr., 241 (2002), 110-120.doi: 10.1002/1522-2616(200207)241:1<110::AID-MANA110>3.0.CO;2-R. |
[26] |
J. Griepentrog, Maximal regularity for nonsmooth parabolic problems in Sobolev-Morrey spaces, Adv. Differ. Equ., 12 (2007), 1031-1078. |
[27] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.doi: 10.1137/1.9781611972030. |
[28] |
K. Gröger, A $W^{1,p}$-estimate for solutions to mixed boundary value problems for second order elliptic differential equations, Math. Ann., 283 (1989), 679-687.doi: 10.1007/BF01442860. |
[29] |
K. Gröger, $W^{1,p}$-estimates of solutions to evolution equations corresponding to nonsmooth second order elliptic differential operators, Nonlinear Anal., 18 (1992), 569-577.doi: 10.1016/0362-546X(92)90211-V. |
[30] |
B. H. Haak and E. M. Ouhabaz, Maximal regularity for non-autonomous evolution equations, Math. Ann., 363 (2015), 1117-1145.doi: 10.1007/s00208-015-1199-7. |
[31] |
R. Haller-Dintelmann, H.-C. Kaiser and J. Rehberg, Elliptic model problems including mixed boundary conditions and material heterogeneities, J. Math. Pures Appl., 89 (2008), 25-48.doi: 10.1016/j.matpur.2007.09.001. |
[32] |
R. Haller-Dintelmann, C. Meyer, J. Rehberg and A. Schiela, Hölder continuity and optimal control for nonsmooth elliptic problems, Appl. Math. Optim., 60 (2009), 397-428.doi: 10.1007/s00245-009-9077-x. |
[33] |
R. Haller-Dintelmann and J. Rehberg, Maximal parabolic regularity for divergence operators including mixed boundary conditions, J. Differ. Equations, 247 (2009), 1354-1396.doi: 10.1016/j.jde.2009.06.001. |
[34] |
R. Haller-Dintelmann and J. Rehberg, Coercivity for elliptic operators and positivity of solutions on Lipschitz domains, Arch. Math., 95 (2010), 457-468.doi: 10.1007/s00013-010-0184-3. |
[35] |
R. Haller-Dintelmann and J. Rehberg, Maximal parabolic regularity for divergence operators on distribution spaces, in Parabolic problems: The Herbert Amann Festschrift, (eds. J. Escher, P. Guidotti, M. Hieber, P. Mucha, J. Prüss, Y. Shibata, G. Simonett, C. Walker, W. Zajaczkowski), Springer, Basel, 80 (2011), 313-341.doi: 10.1007/978-3-0348-0075-4_17. |
[36] |
M. Hieber and J. Rehberg, Quasilinear parabolic systems with mixed boundary conditions on nonsmooth domains, SIAM J. Math. Anal., 40 (2008), 292-305.doi: 10.1137/070683829. |
[37] |
M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints, Springer Netherlands, 2009.doi: 10.1007/978-1-4020-8839-1. |
[38] |
A. Jonsson and H. Wallin, Function Spaces on Subsets of $\mathbbR^n$, Harwood Academic Publishers, Chur-London-Paris-Utrecht-New York, 1984. |
[39] |
D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980.doi: 10.1137/1.9780898719451. |
[40] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasi-Linear Equations of Parabolic Type, American Mathematical Society (AMS), Providence, RI, 1968. |
[41] |
V. G. Maz'ya, Sobolev Spaces, Second, revised and augmented edition. Grundlehren der Mathematischen Wissenschaften, 342. Springer, Heidelberg, 2011.doi: 10.1007/978-3-662-09922-3. |
[42] |
E. M. Ouhabaz, Maximal regularity for non-autonomous evolution equations governed by forms having less regularity, Arch. Math. (Basel), 105 (2015), 79-91.doi: 10.1007/s00013-015-0783-0. |
[43] |
J. Prüss, Maximal regularity for evolution equations in $L^p$-spaces, Conf. Semin. Mat. Univ. Bari, 285 (2002), 1-39. |
[44] |
M. Struwe, On the Hölder continuity of bounded weak solutions of quasilinear parabolic systems, Manuscr. Math., 35 (1981), 125-145.doi: 10.1007/BF01168452. |
[45] |
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North Holland Publishing Company, Amsterdam-New York-Oxford, 1978. |