• Previous Article
    The stochastic linear quadratic optimal control problem in Hilbert spaces: A polynomial chaos approach
  • EECT Home
  • This Issue
  • Next Article
    Energy decay rates for solutions of the wave equation with linear damping in exterior domain
March  2016, 5(1): 61-103. doi: 10.3934/eect.2016.5.61

Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions

1. 

Department of Mathematics, Florida International University, Miami, FL, 33199

2. 

University of Puerto Rico, Rio Piedras Campus, Department of Mathematics, P.O. Box 70377, San Juan PR 00936-8377

Received  July 2015 Revised  November 2015 Published  March 2016

We investigate a class of semilinear parabolic and elliptic problems with fractional dynamic boundary conditions. We introduce two new operators, the so-called fractional Wentzell Laplacian and the fractional Steklov operator, which become essential in our study of these nonlinear problems. Besides giving a complete characterization of well-posedness and regularity of bounded solutions, we also establish the existence of finite-dimensional global attractors and also derive basic conditions for blow-up.
Citation: Ciprian G. Gal, Mahamadi Warma. Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions. Evolution Equations & Control Theory, 2016, 5 (1) : 61-103. doi: 10.3934/eect.2016.5.61
References:
[1]

D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory,, Grundlehren der Mathematischen Wissenschaften, 314 (1996).  doi: 10.1007/978-3-662-03282-4.  Google Scholar

[2]

K. Bogdan, K. Burdzy and Z-Q. Chen, Censored stable processes,, Probab. Theory Related Fields, 127 (2003), 89.  doi: 10.1007/s00440-003-0275-1.  Google Scholar

[3]

J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems,, Cambridge University Press, (2000).  doi: 10.1017/CBO9780511526404.  Google Scholar

[4]

D. Daners and P. Drábek, A priori estimates for a class of quasi-linear elliptic equations,, Trans. Amer. Math. Soc., 361 (2009), 6475.  doi: 10.1090/S0002-9947-09-04839-9.  Google Scholar

[5]

E. B. Davies, Heat Kernels and Spectral Theory,, Cambridge University Press, (1989).  doi: 10.1017/CBO9780511566158.  Google Scholar

[6]

A. Di Castro, T. Kuusi and G. Palatucci, Nonlocal Harnack inequalities,, J. Funct. Anal., 267 (2014), 1807.  doi: 10.1016/j.jfa.2014.05.023.  Google Scholar

[7]

A. Di Castro, T. Kuusi and G. Palatucci, Local behavior of fractional p-minimizers,, Ann. Inst. H. Poincaré Anal. Non Linéaire, ().  doi: 10.1016/j.anihpc.2015.04.003.  Google Scholar

[8]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[9]

S. Dipierro, X. Ros-Oton and E. Valdinoci, Nonlocal problems with Neumann boundary conditions,, Rev. Mat. Iberoam., ().   Google Scholar

[10]

Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems and nonlocal balance laws,, Math. Models Methods Appl. Sci., 23 (2013), 493.  doi: 10.1142/S0218202512500546.  Google Scholar

[11]

M. Efendiev and S. Zelik, Finite-dimensional attractors and exponential attractors for degenerate doubly nonlinear equations,, Math. Methods Appl. Sci., 32 (2009), 1638.  doi: 10.1002/mma.1102.  Google Scholar

[12]

M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes,, Second revised and extended edition. De Gruyter Studies in Mathematics, 19 (2011).   Google Scholar

[13]

C. G. Gal, On a class of degenerate parabolic equations with dynamic boundary conditions,, J. Differential Equations, 253 (2012), 126.  doi: 10.1016/j.jde.2012.02.010.  Google Scholar

[14]

C. G. Gal, The role of surface diffusion in dynamic boundary conditions: Where do we stand?,, Milan Journal of Mathematics, 83 (2015), 237.  doi: 10.1007/s00032-015-0242-1.  Google Scholar

[15]

C. G. Gal and M. Warma, Long-term behavior of reaction-diffusion equations with nonlocal boundary conditions on rough domains,, J. Dyn. Diff. Eqns., ().   Google Scholar

[16]

C. G. Gal and M. Warma, Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions,, Disc. Cont. Dyn. Syst., 36 (2016), 1279.   Google Scholar

[17]

R. Gorenflo and F. Mainardi, Random walk models approximating symmetric space-fractional diffusion processes,, Problems and methods in mathematical physics (Chemnitz, 121 (2001), 120.   Google Scholar

[18]

Q. Y. Guan, Integration by parts formula for regional fractional Laplacian,, Comm. Math. Phys., 266 (2006), 289.  doi: 10.1007/s00220-006-0054-9.  Google Scholar

[19]

Q. Y. Guan and Z. M. Ma, Boundary problems for fractional Laplacians,, Stoch. Dyn., 5 (2005), 385.  doi: 10.1142/S021949370500150X.  Google Scholar

[20]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Monographs and Studies in Mathematics, 24 (1985).   Google Scholar

[21]

M. Gunzburger and R. B. Lehoucq, A nonlocal vector calculus with application to nonlocal boundary value problems,, Multiscale Model. Simul., 8 (2010), 1581.  doi: 10.1137/090766607.  Google Scholar

[22]

A. Jonsson and H. Wallin, Function Spaces on Subsets of $\mathbb R^N$,, Math. Rep., 2 (1984).   Google Scholar

[23]

M. Kirane, Blow-up for some equations with semilinear dynamical boundary conditions of parabolic and hyperbolic type,, Hokkaido Math. J., 21 (1992), 221.  doi: 10.14492/hokmj/1381413677.  Google Scholar

[24]

T. Kuusi, G. Mingione and Y. Sire, Nonlocal equations with measure data,, Comm. Math. Phys., 337 (2015), 1317.  doi: 10.1007/s00220-015-2356-2.  Google Scholar

[25]

R. Muralidhar, D. Ramkrishna, H. Nakanishi and D. Jacobs, Anomalous diffusion: A dynamic perspective,, Physica A: Statistical Mechanics and its Applications, 167 (1990), 539.  doi: 10.1016/0378-4371(90)90132-C.  Google Scholar

[26]

E. M. Ouhabaz, Analysis of Heat Equations on Domains,, London Mathematical Society Monographs Series 31, 31 (2005).   Google Scholar

[27]

S. Umarov and R. Gorenflo, On multi-dimensional random walk models approximating symmetric space-fractional diffusion processes,, Fract. Calc. Appl. Anal., 8 (2005), 73.   Google Scholar

[28]

J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators,, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 857.  doi: 10.3934/dcdss.2014.7.857.  Google Scholar

[29]

L. Vlahos, H. Isliker, Y. Kominis and K. Hizonidis, Normal and anomalous Diffusion: a tutorial,, In, (2008).   Google Scholar

[30]

M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets,, Potential Anal., 42 (2015), 499.  doi: 10.1007/s11118-014-9443-4.  Google Scholar

[31]

M. Warma, A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains,, Commun. Pure Appl. Anal., 14 (2015), 2043.  doi: 10.3934/cpaa.2015.14.2043.  Google Scholar

[32]

M. Warma, The fractional Neumann and Robin boundary conditions for the regional fractional $p$-Laplacian,, NoDEA Nonlinear Differential Equations Appl., 23 (2016).  doi: 10.1007/s00030-016-0354-5.  Google Scholar

show all references

References:
[1]

D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory,, Grundlehren der Mathematischen Wissenschaften, 314 (1996).  doi: 10.1007/978-3-662-03282-4.  Google Scholar

[2]

K. Bogdan, K. Burdzy and Z-Q. Chen, Censored stable processes,, Probab. Theory Related Fields, 127 (2003), 89.  doi: 10.1007/s00440-003-0275-1.  Google Scholar

[3]

J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems,, Cambridge University Press, (2000).  doi: 10.1017/CBO9780511526404.  Google Scholar

[4]

D. Daners and P. Drábek, A priori estimates for a class of quasi-linear elliptic equations,, Trans. Amer. Math. Soc., 361 (2009), 6475.  doi: 10.1090/S0002-9947-09-04839-9.  Google Scholar

[5]

E. B. Davies, Heat Kernels and Spectral Theory,, Cambridge University Press, (1989).  doi: 10.1017/CBO9780511566158.  Google Scholar

[6]

A. Di Castro, T. Kuusi and G. Palatucci, Nonlocal Harnack inequalities,, J. Funct. Anal., 267 (2014), 1807.  doi: 10.1016/j.jfa.2014.05.023.  Google Scholar

[7]

A. Di Castro, T. Kuusi and G. Palatucci, Local behavior of fractional p-minimizers,, Ann. Inst. H. Poincaré Anal. Non Linéaire, ().  doi: 10.1016/j.anihpc.2015.04.003.  Google Scholar

[8]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[9]

S. Dipierro, X. Ros-Oton and E. Valdinoci, Nonlocal problems with Neumann boundary conditions,, Rev. Mat. Iberoam., ().   Google Scholar

[10]

Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems and nonlocal balance laws,, Math. Models Methods Appl. Sci., 23 (2013), 493.  doi: 10.1142/S0218202512500546.  Google Scholar

[11]

M. Efendiev and S. Zelik, Finite-dimensional attractors and exponential attractors for degenerate doubly nonlinear equations,, Math. Methods Appl. Sci., 32 (2009), 1638.  doi: 10.1002/mma.1102.  Google Scholar

[12]

M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes,, Second revised and extended edition. De Gruyter Studies in Mathematics, 19 (2011).   Google Scholar

[13]

C. G. Gal, On a class of degenerate parabolic equations with dynamic boundary conditions,, J. Differential Equations, 253 (2012), 126.  doi: 10.1016/j.jde.2012.02.010.  Google Scholar

[14]

C. G. Gal, The role of surface diffusion in dynamic boundary conditions: Where do we stand?,, Milan Journal of Mathematics, 83 (2015), 237.  doi: 10.1007/s00032-015-0242-1.  Google Scholar

[15]

C. G. Gal and M. Warma, Long-term behavior of reaction-diffusion equations with nonlocal boundary conditions on rough domains,, J. Dyn. Diff. Eqns., ().   Google Scholar

[16]

C. G. Gal and M. Warma, Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions,, Disc. Cont. Dyn. Syst., 36 (2016), 1279.   Google Scholar

[17]

R. Gorenflo and F. Mainardi, Random walk models approximating symmetric space-fractional diffusion processes,, Problems and methods in mathematical physics (Chemnitz, 121 (2001), 120.   Google Scholar

[18]

Q. Y. Guan, Integration by parts formula for regional fractional Laplacian,, Comm. Math. Phys., 266 (2006), 289.  doi: 10.1007/s00220-006-0054-9.  Google Scholar

[19]

Q. Y. Guan and Z. M. Ma, Boundary problems for fractional Laplacians,, Stoch. Dyn., 5 (2005), 385.  doi: 10.1142/S021949370500150X.  Google Scholar

[20]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Monographs and Studies in Mathematics, 24 (1985).   Google Scholar

[21]

M. Gunzburger and R. B. Lehoucq, A nonlocal vector calculus with application to nonlocal boundary value problems,, Multiscale Model. Simul., 8 (2010), 1581.  doi: 10.1137/090766607.  Google Scholar

[22]

A. Jonsson and H. Wallin, Function Spaces on Subsets of $\mathbb R^N$,, Math. Rep., 2 (1984).   Google Scholar

[23]

M. Kirane, Blow-up for some equations with semilinear dynamical boundary conditions of parabolic and hyperbolic type,, Hokkaido Math. J., 21 (1992), 221.  doi: 10.14492/hokmj/1381413677.  Google Scholar

[24]

T. Kuusi, G. Mingione and Y. Sire, Nonlocal equations with measure data,, Comm. Math. Phys., 337 (2015), 1317.  doi: 10.1007/s00220-015-2356-2.  Google Scholar

[25]

R. Muralidhar, D. Ramkrishna, H. Nakanishi and D. Jacobs, Anomalous diffusion: A dynamic perspective,, Physica A: Statistical Mechanics and its Applications, 167 (1990), 539.  doi: 10.1016/0378-4371(90)90132-C.  Google Scholar

[26]

E. M. Ouhabaz, Analysis of Heat Equations on Domains,, London Mathematical Society Monographs Series 31, 31 (2005).   Google Scholar

[27]

S. Umarov and R. Gorenflo, On multi-dimensional random walk models approximating symmetric space-fractional diffusion processes,, Fract. Calc. Appl. Anal., 8 (2005), 73.   Google Scholar

[28]

J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators,, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 857.  doi: 10.3934/dcdss.2014.7.857.  Google Scholar

[29]

L. Vlahos, H. Isliker, Y. Kominis and K. Hizonidis, Normal and anomalous Diffusion: a tutorial,, In, (2008).   Google Scholar

[30]

M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets,, Potential Anal., 42 (2015), 499.  doi: 10.1007/s11118-014-9443-4.  Google Scholar

[31]

M. Warma, A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains,, Commun. Pure Appl. Anal., 14 (2015), 2043.  doi: 10.3934/cpaa.2015.14.2043.  Google Scholar

[32]

M. Warma, The fractional Neumann and Robin boundary conditions for the regional fractional $p$-Laplacian,, NoDEA Nonlinear Differential Equations Appl., 23 (2016).  doi: 10.1007/s00030-016-0354-5.  Google Scholar

[1]

Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043

[2]

Eugenio Montefusco, Benedetta Pellacci, Gianmaria Verzini. Fractional diffusion with Neumann boundary conditions: The logistic equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2175-2202. doi: 10.3934/dcdsb.2013.18.2175

[3]

Kevin Arfi, Anna Rozanova-Pierrat. Dirichlet-to-Neumann or Poincaré-Steklov operator on fractals described by d-sets. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 1-26. doi: 10.3934/dcdss.2019001

[4]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

[5]

Yirong Jiang, Nanjing Huang, Zhouchao Wei. Existence of a global attractor for fractional differential hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019216

[6]

Ciprian G. Gal, Mahamadi Warma. Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1279-1319. doi: 10.3934/dcds.2016.36.1279

[7]

Grégoire Allaire, Yves Capdeboscq, Marjolaine Puel. Homogenization of a one-dimensional spectral problem for a singularly perturbed elliptic operator with Neumann boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 1-31. doi: 10.3934/dcdsb.2012.17.1

[8]

Yuxia Guo, Jianjun Nie. Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6873-6898. doi: 10.3934/dcds.2016099

[9]

Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007

[10]

Mei Ming. Weighted elliptic estimates for a mixed boundary system related to the Dirichlet-Neumann operator on a corner domain. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6039-6067. doi: 10.3934/dcds.2019264

[11]

Sven Jarohs, Tobias Weth. Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2581-2615. doi: 10.3934/dcds.2014.34.2581

[12]

Costică Moroşanu. Stability and errors analysis of two iterative schemes of fractional steps type associated to a nonlinear reaction-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-21. doi: 10.3934/dcdss.2020089

[13]

Joachim Escher, Tony Lyons. Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach. Journal of Geometric Mechanics, 2015, 7 (3) : 281-293. doi: 10.3934/jgm.2015.7.281

[14]

Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295

[15]

Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic & Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039

[16]

Wenru Huo, Aimin Huang. The global attractor of the 2d Boussinesq equations with fractional Laplacian in subcritical case. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2531-2550. doi: 10.3934/dcdsb.2016059

[17]

Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615

[18]

Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations & Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007

[19]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 709-722. doi: 10.3934/dcdss.2020039

[20]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]