Citation: |
[1] | |
[2] |
S. Agmon, Lectures on Elliptic Boundary Value Problems, D. Van Nostrand Company, Inc., Princeton, 1965. |
[3] |
F. Alabau and V. Komornik, Boundary observability, controllability and stabilization of linear elastodynamic systems, SIAM J. Control Optim., 37 (1999), 521-542.doi: 10.1137/S0363012996313835. |
[4] |
M. Aouadi, Generalized theory of thermoelastic diffusion for anisotropic media, J. Therm. Stresses, 31 (2008), 270-285.doi: 10.1080/01495730701876742. |
[5] |
M. Aouadi and T. Moulahi, Optimal decay rate for unidimensional thermoelastic problem within the Green-Lindsay model, J. Therm. Stresses, 38 (2015), 1199-1216. |
[6] |
R. F. Apolaya, Exact controllability for temporally wave equation, Portugaliae Mathematica, 51 (1994), 475-488. |
[7] |
M. Assila, Nonlinear boundary stabilization of an inhomogeneous and anisotropic thermoelasticity system, App. Math. Lett., 13 (2000), 71-76.doi: 10.1016/S0893-9659(99)00147-0. |
[8] |
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, The Netherlands, 1976. |
[9] |
P. Barral and P. Quintela, A numerical method for simulation of thermal stresses during casting of aluminium slabs, Comput. Methods Appl. Mech. Eng., 178 (1998), 69-88.doi: 10.1016/S0045-7825(99)00005-5. |
[10] |
A. Bermudez, M. C. Muniz and P. Quintela, Numerical solution of a three-dimensional thermoelectric problem taking place in an aluminium electrolytic cell, Comput. Methods Appl. Mech. Eng., 106 (1993), 129-142.doi: 10.1016/0045-7825(93)90188-4. |
[11] |
K. Boulehmi and M. Aouadi, Decay of solutions in inhomogeneous thermoelastic diffusion bars, Appl. Anal., 93 (2014), 281-304.doi: 10.1080/00036811.2013.769133. |
[12] |
C. M. Dafermos, On the existence and the asymptotic stability of solution to the equation of linear thermoelasticity, Arch. Rat. Mech. Anal., 29 (1968), 241-271.doi: 10.1007/BF00276727. |
[13] |
L. De Teresa and E. Zuazua, Controllability of the linear system of thermoelastic plates, Adv. Diff. Equat., 1 (1996), 369-402. |
[14] |
S. W. Hansen, Boundary control of a one-dimentional linear thermoelastic rod, SIAM J. Control Optim., 32 (1994), 1052-1074.doi: 10.1137/S0363012991222607. |
[15] |
M. A. Horn, Sharp trace regularity for the solutions of the equations of dynamic elasticity, J. Math. Syst. Estim. Control, 8 (1998), 217-219. |
[16] |
S. Jian, J. E. Munoz Rivera and R. Racke, Asymptotic stability and global existence in thermoelasticity with symmetry, Quart. Appl. Math., 56 (1998), 259-275. |
[17] |
V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl., 69 (1990), 33-54. |
[18] |
I. Lasiecka, Mathematical Control Theory of Coupled PDEs-Lecture Notes, CBMS-NSF Regional Conference Series in Applied Mathematics SIAM, 75 (2002).doi: 10.1137/1.9780898717099. |
[19] |
I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Diff. Int. Equat., 6 (1993), 507-533. |
[20] |
I. Lasiecka and D. Toundykov, Regularity of higher energies of wave equation with nonlinear localized damping and a nonlinear source, Nonlinear Analysis: Theory, Methods and Applications, 69 (2008), 898-910.doi: 10.1016/j.na.2008.02.069. |
[21] |
I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions, Appl. Math. Optim., 25 (1992), 189-224.doi: 10.1007/BF01182480. |
[22] |
G. Lebeau and E. Zuazua, Sur la décroissance non uniforme de l'énergie dans le système de la thermoélasticité linéaire, C. R. Acad. Sci. Paris Sr. I Math, 324 (1997), 409-415.doi: 10.1016/S0764-4442(97)80077-8. |
[23] |
G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity, Arch. Rat. Mech. Anal., 141 (1998), 297-329.doi: 10.1007/s002050050078. |
[24] |
J. L. Lions, Contôlabilté Exacte Perturbations et Stabilisations de Systèmes Distribués, Tome 2. Pertubations, Masson, Paris, 1988. |
[25] |
W. J. Liu, Partial exact controllability and exponential stability in higher-dimensional linear thermoelasticity, ESAIM: Control Optim. Calc. Var., 3 (1998), 23-48.doi: 10.1051/cocv:1998101. |
[26] |
W. J. Liu, Correction to "Partial exact controllability and exponential stability in higher-dimensional linear thermoelasticity", ESAIM: Control Optim. Calc. Var., 3 (1998), 323-327.doi: 10.1051/cocv:1998113. |
[27] |
W. J. Liu and G. H. Williams, Partial exact controllability for the linear thermo-viscoelastic model, Electron. J. Differential Equations, 1998 (1998), 1-11. |
[28] |
W. J. Liu and E. Zuazua, Uniform stabilization of higher-dimensional system of thermoelasticity with a nonlinear boundary feedback, Quart. Appl. Math., 59 (2001), 269-314. |
[29] |
J. E. Munoz Rivera and M. L. Olivera, Stability in inhomogeneous and anisotropic thermoelasticity, Bollettino U.M.I, 11 (1997), 115-127. |
[30] |
A. K. Nandakumaran and R. K. George, Partial exact controllability of linear thermoelastic system, Indian J. Math, 37 (1995), 165-174. |
[31] |
K. Narukawa, Boundary value control of thermoelastic systems, Hiroshima Math. J., 13 (1983), 227-272. |
[32] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, 1983.doi: 10.1007/978-1-4612-5561-1. |
[33] |
D. C. Pereira and G. P. Menzala, Exponential stability in linear thermoelasticity: The inhomogeneous case, Appl. Anal., 44 (1992), 21-35.doi: 10.1080/00036819208840066. |
[34] |
D. L. Russell, Exact boundary value controlability theorems for wave and heat processes in star-complemented regions, in Differential games and control theory, Roxin, Lui, and Sternberg, Eds., Marcel Dekker Inc., New York, 10 (1974), 291-319. |
[35] |
E. Zuazua, Controllability of the linear system of thermoelasticity, J. Math. Pures Appl., 74 (1995), 303-346. |