June  2016, 5(2): 225-234. doi: 10.3934/eect.2016002

Blowup and ill-posedness results for a Dirac equation without gauge invariance

1. 

Dipartimento di Matematica, Unversità di Roma "La Sapienza", Piazzale A. More 2, 00185 Roma, Italy

2. 

Department of Mathematics, Institute of Engineering, Academic Assembly, Shinshu University, 4-17-1 Wakasato, Nagano City 380-8553

Received  January 2016 Revised  April 2016 Published  June 2016

We consider the Cauchy problem for a nonlinear Dirac equation on $\mathbb{R}^{n}$, $n\ge1$, with a power type, non gauge invariant nonlinearity $\sim|u|^{p}$. We prove several ill-posedness and blowup results for both large and small $H^{s}$ data. In particular we prove that: for (essentially arbitrary) large data in $H^{\frac n2+}(\mathbb{R} ^n)$ the solution blows up in a finite time; for suitable large $H^{s}(\mathbb{R} ^n)$ data and $s< \frac{n}{2}-\frac{1}{p-1}$ no weak solution exist; when $1< p <1+\frac1n$ (or $1< p <1+\frac2n$ in $n=1,2,3$), there exist arbitrarily small initial data data for which the solution blows up in a finite time.
Citation: Piero D'Ancona, Mamoru Okamoto. Blowup and ill-posedness results for a Dirac equation without gauge invariance. Evolution Equations & Control Theory, 2016, 5 (2) : 225-234. doi: 10.3934/eect.2016002
References:
[1]

I. Bejenaru and S. Herr, The cubic Dirac equation: Small initial data in $H^1(\mathbbR^3)$,, Comm. Math. Phys., 335 (2015), 43.  doi: 10.1007/s00220-014-2164-0.  Google Scholar

[2]

I. Bejenaru and S. Herr, The cubic Dirac equation: Small initial data in $H^{1/2}(\mathbbR^2)$,, Comm. Math. Phys., 343 (2016), 515.  doi: 10.1007/s00220-015-2508-4.  Google Scholar

[3]

N. Bournaveas and T. Candy, Global well-posedness for the massless cubic Dirac equation,, Int Math Res Notices in press., ().  doi: 10.1093/imrn/rnv361.  Google Scholar

[4]

T. Candy, Global existence for an $L^2$ critical nonlinear Dirac equation in one dimension,, Adv. Differential Equations, 16 (2011), 643.   Google Scholar

[5]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lect. Notes Math., (2003).   Google Scholar

[6]

M. Escobedo and L. Vega, A semilinear Dirac equation in $H^s(\mathbbR^3)$ for $s>1$,, SIAM J. Math. Anal., 28 (1997), 338.  doi: 10.1137/S0036141095283017.  Google Scholar

[7]

R. Glassey, Finite-time blow-up for solutions of nonlinear wave equations,, Math. Z., 177 (1981), 323.  doi: 10.1007/BF01162066.  Google Scholar

[8]

M. Ikeda and Y. Wakasugi, Small-data blow-up of $L^2$-solution for the nonlinear Schrödinger equation without gauge invariance,, Differential Integral Equations, 26 (2013), 1275.   Google Scholar

[9]

M. Ikeda and T. Inui, Small data blow-up of $L^2$ or $H^1$-solution for the semilinear Schrödinger equation without gauge invariance,, J. Evol. Equ., 15 (2015), 571.  doi: 10.1007/s00028-015-0273-7.  Google Scholar

[10]

M. Ikeda and T. Inui, Some non-existence results for the semilinear Schrödinger equation without gauge invariance,, J. Math. Anal. Appl., 425 (2015), 758.  doi: 10.1016/j.jmaa.2015.01.003.  Google Scholar

[11]

F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions,, Manuscripta Math., 28 (1979), 235.  doi: 10.1007/BF01647974.  Google Scholar

[12]

S. Machihara, M. Nakamura, K. Nakanishi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation,, J. Funct. Anal., 219 (2005), 1.  doi: 10.1016/j.jfa.2004.07.005.  Google Scholar

[13]

T. Oh, A blowup result for the periodic NLS without gauge invariance,, C. R. Acad. Sci. Paris. Ser., 350 (2012), 389.  doi: 10.1016/j.crma.2012.04.009.  Google Scholar

[14]

H. Pecher, Local well-posedness for the nonlinear Dirac equation in two space dimensions,, Commun. Pure Appl. Anal., 13 (2014), 673.  doi: 10.3934/cpaa.2014.13.673.  Google Scholar

[15]

T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations,, de Gruyter Series in Nonlinear Analysis and Applications, 3 (1996).  doi: 10.1515/9783110812411.  Google Scholar

[16]

T. Sideris, Nonexistence of global solutions to semilinear wave equations in high dimensions,, J. Differential Equations, 52 (1984), 378.  doi: 10.1016/0022-0396(84)90169-4.  Google Scholar

[17]

Q. Zhang, Blow-up results for nonlinear parabolic equations on manifolds,, Duke Math. J., 97 (1999), 515.  doi: 10.1215/S0012-7094-99-09719-3.  Google Scholar

[18]

Q. Zhang, A blow-up result for a nonlinear wave equation with damping: The critical case,, C. R. Acad. Sci. Paris, 333 (2001), 109.  doi: 10.1016/S0764-4442(01)01999-1.  Google Scholar

show all references

References:
[1]

I. Bejenaru and S. Herr, The cubic Dirac equation: Small initial data in $H^1(\mathbbR^3)$,, Comm. Math. Phys., 335 (2015), 43.  doi: 10.1007/s00220-014-2164-0.  Google Scholar

[2]

I. Bejenaru and S. Herr, The cubic Dirac equation: Small initial data in $H^{1/2}(\mathbbR^2)$,, Comm. Math. Phys., 343 (2016), 515.  doi: 10.1007/s00220-015-2508-4.  Google Scholar

[3]

N. Bournaveas and T. Candy, Global well-posedness for the massless cubic Dirac equation,, Int Math Res Notices in press., ().  doi: 10.1093/imrn/rnv361.  Google Scholar

[4]

T. Candy, Global existence for an $L^2$ critical nonlinear Dirac equation in one dimension,, Adv. Differential Equations, 16 (2011), 643.   Google Scholar

[5]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lect. Notes Math., (2003).   Google Scholar

[6]

M. Escobedo and L. Vega, A semilinear Dirac equation in $H^s(\mathbbR^3)$ for $s>1$,, SIAM J. Math. Anal., 28 (1997), 338.  doi: 10.1137/S0036141095283017.  Google Scholar

[7]

R. Glassey, Finite-time blow-up for solutions of nonlinear wave equations,, Math. Z., 177 (1981), 323.  doi: 10.1007/BF01162066.  Google Scholar

[8]

M. Ikeda and Y. Wakasugi, Small-data blow-up of $L^2$-solution for the nonlinear Schrödinger equation without gauge invariance,, Differential Integral Equations, 26 (2013), 1275.   Google Scholar

[9]

M. Ikeda and T. Inui, Small data blow-up of $L^2$ or $H^1$-solution for the semilinear Schrödinger equation without gauge invariance,, J. Evol. Equ., 15 (2015), 571.  doi: 10.1007/s00028-015-0273-7.  Google Scholar

[10]

M. Ikeda and T. Inui, Some non-existence results for the semilinear Schrödinger equation without gauge invariance,, J. Math. Anal. Appl., 425 (2015), 758.  doi: 10.1016/j.jmaa.2015.01.003.  Google Scholar

[11]

F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions,, Manuscripta Math., 28 (1979), 235.  doi: 10.1007/BF01647974.  Google Scholar

[12]

S. Machihara, M. Nakamura, K. Nakanishi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation,, J. Funct. Anal., 219 (2005), 1.  doi: 10.1016/j.jfa.2004.07.005.  Google Scholar

[13]

T. Oh, A blowup result for the periodic NLS without gauge invariance,, C. R. Acad. Sci. Paris. Ser., 350 (2012), 389.  doi: 10.1016/j.crma.2012.04.009.  Google Scholar

[14]

H. Pecher, Local well-posedness for the nonlinear Dirac equation in two space dimensions,, Commun. Pure Appl. Anal., 13 (2014), 673.  doi: 10.3934/cpaa.2014.13.673.  Google Scholar

[15]

T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations,, de Gruyter Series in Nonlinear Analysis and Applications, 3 (1996).  doi: 10.1515/9783110812411.  Google Scholar

[16]

T. Sideris, Nonexistence of global solutions to semilinear wave equations in high dimensions,, J. Differential Equations, 52 (1984), 378.  doi: 10.1016/0022-0396(84)90169-4.  Google Scholar

[17]

Q. Zhang, Blow-up results for nonlinear parabolic equations on manifolds,, Duke Math. J., 97 (1999), 515.  doi: 10.1215/S0012-7094-99-09719-3.  Google Scholar

[18]

Q. Zhang, A blow-up result for a nonlinear wave equation with damping: The critical case,, C. R. Acad. Sci. Paris, 333 (2001), 109.  doi: 10.1016/S0764-4442(01)01999-1.  Google Scholar

[1]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[2]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[3]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[4]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[5]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[6]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[7]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[8]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[9]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[10]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[11]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[12]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[13]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[14]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[15]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

[16]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[17]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[18]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[19]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[20]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]