June  2016, 5(2): 225-234. doi: 10.3934/eect.2016002

Blowup and ill-posedness results for a Dirac equation without gauge invariance

1. 

Dipartimento di Matematica, Unversità di Roma "La Sapienza", Piazzale A. More 2, 00185 Roma, Italy

2. 

Department of Mathematics, Institute of Engineering, Academic Assembly, Shinshu University, 4-17-1 Wakasato, Nagano City 380-8553

Received  January 2016 Revised  April 2016 Published  June 2016

We consider the Cauchy problem for a nonlinear Dirac equation on $\mathbb{R}^{n}$, $n\ge1$, with a power type, non gauge invariant nonlinearity $\sim|u|^{p}$. We prove several ill-posedness and blowup results for both large and small $H^{s}$ data. In particular we prove that: for (essentially arbitrary) large data in $H^{\frac n2+}(\mathbb{R} ^n)$ the solution blows up in a finite time; for suitable large $H^{s}(\mathbb{R} ^n)$ data and $s< \frac{n}{2}-\frac{1}{p-1}$ no weak solution exist; when $1< p <1+\frac1n$ (or $1< p <1+\frac2n$ in $n=1,2,3$), there exist arbitrarily small initial data data for which the solution blows up in a finite time.
Citation: Piero D'Ancona, Mamoru Okamoto. Blowup and ill-posedness results for a Dirac equation without gauge invariance. Evolution Equations & Control Theory, 2016, 5 (2) : 225-234. doi: 10.3934/eect.2016002
References:
[1]

I. Bejenaru and S. Herr, The cubic Dirac equation: Small initial data in $H^1(\mathbbR^3)$,, Comm. Math. Phys., 335 (2015), 43.  doi: 10.1007/s00220-014-2164-0.  Google Scholar

[2]

I. Bejenaru and S. Herr, The cubic Dirac equation: Small initial data in $H^{1/2}(\mathbbR^2)$,, Comm. Math. Phys., 343 (2016), 515.  doi: 10.1007/s00220-015-2508-4.  Google Scholar

[3]

N. Bournaveas and T. Candy, Global well-posedness for the massless cubic Dirac equation,, Int Math Res Notices in press., ().  doi: 10.1093/imrn/rnv361.  Google Scholar

[4]

T. Candy, Global existence for an $L^2$ critical nonlinear Dirac equation in one dimension,, Adv. Differential Equations, 16 (2011), 643.   Google Scholar

[5]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lect. Notes Math., (2003).   Google Scholar

[6]

M. Escobedo and L. Vega, A semilinear Dirac equation in $H^s(\mathbbR^3)$ for $s>1$,, SIAM J. Math. Anal., 28 (1997), 338.  doi: 10.1137/S0036141095283017.  Google Scholar

[7]

R. Glassey, Finite-time blow-up for solutions of nonlinear wave equations,, Math. Z., 177 (1981), 323.  doi: 10.1007/BF01162066.  Google Scholar

[8]

M. Ikeda and Y. Wakasugi, Small-data blow-up of $L^2$-solution for the nonlinear Schrödinger equation without gauge invariance,, Differential Integral Equations, 26 (2013), 1275.   Google Scholar

[9]

M. Ikeda and T. Inui, Small data blow-up of $L^2$ or $H^1$-solution for the semilinear Schrödinger equation without gauge invariance,, J. Evol. Equ., 15 (2015), 571.  doi: 10.1007/s00028-015-0273-7.  Google Scholar

[10]

M. Ikeda and T. Inui, Some non-existence results for the semilinear Schrödinger equation without gauge invariance,, J. Math. Anal. Appl., 425 (2015), 758.  doi: 10.1016/j.jmaa.2015.01.003.  Google Scholar

[11]

F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions,, Manuscripta Math., 28 (1979), 235.  doi: 10.1007/BF01647974.  Google Scholar

[12]

S. Machihara, M. Nakamura, K. Nakanishi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation,, J. Funct. Anal., 219 (2005), 1.  doi: 10.1016/j.jfa.2004.07.005.  Google Scholar

[13]

T. Oh, A blowup result for the periodic NLS without gauge invariance,, C. R. Acad. Sci. Paris. Ser., 350 (2012), 389.  doi: 10.1016/j.crma.2012.04.009.  Google Scholar

[14]

H. Pecher, Local well-posedness for the nonlinear Dirac equation in two space dimensions,, Commun. Pure Appl. Anal., 13 (2014), 673.  doi: 10.3934/cpaa.2014.13.673.  Google Scholar

[15]

T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations,, de Gruyter Series in Nonlinear Analysis and Applications, 3 (1996).  doi: 10.1515/9783110812411.  Google Scholar

[16]

T. Sideris, Nonexistence of global solutions to semilinear wave equations in high dimensions,, J. Differential Equations, 52 (1984), 378.  doi: 10.1016/0022-0396(84)90169-4.  Google Scholar

[17]

Q. Zhang, Blow-up results for nonlinear parabolic equations on manifolds,, Duke Math. J., 97 (1999), 515.  doi: 10.1215/S0012-7094-99-09719-3.  Google Scholar

[18]

Q. Zhang, A blow-up result for a nonlinear wave equation with damping: The critical case,, C. R. Acad. Sci. Paris, 333 (2001), 109.  doi: 10.1016/S0764-4442(01)01999-1.  Google Scholar

show all references

References:
[1]

I. Bejenaru and S. Herr, The cubic Dirac equation: Small initial data in $H^1(\mathbbR^3)$,, Comm. Math. Phys., 335 (2015), 43.  doi: 10.1007/s00220-014-2164-0.  Google Scholar

[2]

I. Bejenaru and S. Herr, The cubic Dirac equation: Small initial data in $H^{1/2}(\mathbbR^2)$,, Comm. Math. Phys., 343 (2016), 515.  doi: 10.1007/s00220-015-2508-4.  Google Scholar

[3]

N. Bournaveas and T. Candy, Global well-posedness for the massless cubic Dirac equation,, Int Math Res Notices in press., ().  doi: 10.1093/imrn/rnv361.  Google Scholar

[4]

T. Candy, Global existence for an $L^2$ critical nonlinear Dirac equation in one dimension,, Adv. Differential Equations, 16 (2011), 643.   Google Scholar

[5]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lect. Notes Math., (2003).   Google Scholar

[6]

M. Escobedo and L. Vega, A semilinear Dirac equation in $H^s(\mathbbR^3)$ for $s>1$,, SIAM J. Math. Anal., 28 (1997), 338.  doi: 10.1137/S0036141095283017.  Google Scholar

[7]

R. Glassey, Finite-time blow-up for solutions of nonlinear wave equations,, Math. Z., 177 (1981), 323.  doi: 10.1007/BF01162066.  Google Scholar

[8]

M. Ikeda and Y. Wakasugi, Small-data blow-up of $L^2$-solution for the nonlinear Schrödinger equation without gauge invariance,, Differential Integral Equations, 26 (2013), 1275.   Google Scholar

[9]

M. Ikeda and T. Inui, Small data blow-up of $L^2$ or $H^1$-solution for the semilinear Schrödinger equation without gauge invariance,, J. Evol. Equ., 15 (2015), 571.  doi: 10.1007/s00028-015-0273-7.  Google Scholar

[10]

M. Ikeda and T. Inui, Some non-existence results for the semilinear Schrödinger equation without gauge invariance,, J. Math. Anal. Appl., 425 (2015), 758.  doi: 10.1016/j.jmaa.2015.01.003.  Google Scholar

[11]

F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions,, Manuscripta Math., 28 (1979), 235.  doi: 10.1007/BF01647974.  Google Scholar

[12]

S. Machihara, M. Nakamura, K. Nakanishi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation,, J. Funct. Anal., 219 (2005), 1.  doi: 10.1016/j.jfa.2004.07.005.  Google Scholar

[13]

T. Oh, A blowup result for the periodic NLS without gauge invariance,, C. R. Acad. Sci. Paris. Ser., 350 (2012), 389.  doi: 10.1016/j.crma.2012.04.009.  Google Scholar

[14]

H. Pecher, Local well-posedness for the nonlinear Dirac equation in two space dimensions,, Commun. Pure Appl. Anal., 13 (2014), 673.  doi: 10.3934/cpaa.2014.13.673.  Google Scholar

[15]

T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations,, de Gruyter Series in Nonlinear Analysis and Applications, 3 (1996).  doi: 10.1515/9783110812411.  Google Scholar

[16]

T. Sideris, Nonexistence of global solutions to semilinear wave equations in high dimensions,, J. Differential Equations, 52 (1984), 378.  doi: 10.1016/0022-0396(84)90169-4.  Google Scholar

[17]

Q. Zhang, Blow-up results for nonlinear parabolic equations on manifolds,, Duke Math. J., 97 (1999), 515.  doi: 10.1215/S0012-7094-99-09719-3.  Google Scholar

[18]

Q. Zhang, A blow-up result for a nonlinear wave equation with damping: The critical case,, C. R. Acad. Sci. Paris, 333 (2001), 109.  doi: 10.1016/S0764-4442(01)01999-1.  Google Scholar

[1]

Jaeyoung Byeon, Sungwon Cho, Junsang Park. On the location of a peak point of a least energy solution for Hénon equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1055-1081. doi: 10.3934/dcds.2011.30.1055

[2]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[3]

Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225

[4]

Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809

[5]

Futoshi Takahashi. On the number of maximum points of least energy solution to a two-dimensional Hénon equation with large exponent. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1237-1241. doi: 10.3934/cpaa.2013.12.1237

[6]

Tetsuya Ishiwata, Shigetoshi Yazaki. A fast blow-up solution and degenerate pinching arising in an anisotropic crystalline motion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2069-2090. doi: 10.3934/dcds.2014.34.2069

[7]

Yanqin Fang, Jihui Zhang. Nonexistence of positive solution for an integral equation on a Half-Space $R_+^n$. Communications on Pure & Applied Analysis, 2013, 12 (2) : 663-678. doi: 10.3934/cpaa.2013.12.663

[8]

Guofu Lu. Nonexistence and short time asymptotic behavior of source-type solution for porous medium equation with convection in one-dimension. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1567-1586. doi: 10.3934/dcdsb.2016011

[9]

Adnan H. Sabuwala, Doreen De Leon. Particular solution to the Euler-Cauchy equation with polynomial non-homegeneities. Conference Publications, 2011, 2011 (Special) : 1271-1278. doi: 10.3934/proc.2011.2011.1271

[10]

Xinlong Feng, Yinnian He. On uniform in time $H^2$-regularity of the solution for the 2D Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5387-5400. doi: 10.3934/dcds.2016037

[11]

Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935

[12]

Asma Azaiez. Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2397-2408. doi: 10.3934/cpaa.2019108

[13]

Kaïs Ammari, Thomas Duyckaerts, Armen Shirikyan. Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation. Mathematical Control & Related Fields, 2016, 6 (1) : 1-25. doi: 10.3934/mcrf.2016.6.1

[14]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

[15]

Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solution of the Novikov equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2865-2899. doi: 10.3934/dcdsb.2018290

[16]

Lucio Boccardo, Alessio Porretta. Uniqueness for elliptic problems with Hölder--type dependence on the solution. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1569-1585. doi: 10.3934/cpaa.2013.12.1569

[17]

Hirotada Honda. Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling. Networks & Heterogeneous Media, 2017, 12 (1) : 25-57. doi: 10.3934/nhm.2017002

[18]

Benjamin B. Kennedy. A periodic solution with non-simple oscillation for an equation with state-dependent delay and strictly monotonic negative feedback. Discrete & Continuous Dynamical Systems - S, 2020, 13 (1) : 47-66. doi: 10.3934/dcdss.2020003

[19]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[20]

Yong Zhou, Zhengguang Guo. Blow up and propagation speed of solutions to the DGH equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 657-670. doi: 10.3934/dcdsb.2009.12.657

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]