June  2016, 5(2): 235-250. doi: 10.3934/eect.2016003

Exponential stability of a coupled system with Wentzell conditions

1. 

Laboratoire AMNEDP, Mathematics Department, USTHB, BP 32 El-Alia, Bab-Ezzouar, Algiers, Algeria, Algeria

Received  February 2016 Revised  April 2016 Published  June 2016

A coupled system of hyperbolic equations in Maxwell/wave with Wentzell conditions in a bounded domain of $\mathbb{R}^3$ is considered. Under suitable assumptions, we show the exponential stability of the system. Our method is based on an identity with multipliers that allows to show an appropriate stability estimate.
Citation: Hichem Kasri, Amar Heminna. Exponential stability of a coupled system with Wentzell conditions. Evolution Equations & Control Theory, 2016, 5 (2) : 235-250. doi: 10.3934/eect.2016003
References:
[1]

R. Bey, A. Heminna and J. P. Loheac, Boundary stabilization of a linear elastodynamic system with variable coefficients,, Electronic Journal of Differential Equations, 78 (2001), 1.   Google Scholar

[2]

M. Eller, J. E. Lagnese and S. Nicaise, Stabilization of heteregeneous Maxwell's equations by linear or nonlinear boundary feedbacks,, Electronic journal of differential equations, 21 (2002), 1.   Google Scholar

[3]

M. Eller, J. E. Lagnese and S. Nicaise, Decay rates for solutions of a Maxwell system with nonlinear boundary damping,, Comp. and Apppl. Math., 21 (2002), 135.   Google Scholar

[4]

A. Heminna, Contrôlabilité Exacte et Stabilisation Frontière de Divers Problèmes aux Limites Modélisant des Jonctions de Multi-structures,, Thesis, (2000).   Google Scholar

[5]

A. Heminna, Contrôlabilité exacte d'un problème avec conditions de Ventcel evolutives pour le système linéaire de l'elasticité,, Revista Matemàtica Complutense, 14 (2001), 231.  doi: 10.5209/rev_REMA.2001.v14.n1.17061.  Google Scholar

[6]

A. Heminna, Stabilisation frontière de l'équation des ondes avec condition de Ventcel,, Maghreb Math. Rev, 11 (2002), 165.   Google Scholar

[7]

A. Heminna, Stabilisation frontière de problèmes de Ventcel,, C. R. Acad. Sci. Paris Sèr. I Math, 328 (1999), 1171.  doi: 10.1016/S0764-4442(99)80434-0.  Google Scholar

[8]

A. Heminna, Stabilisation Frontière de Problèmes de Ventcel,, ESAIM Control Optim. Calc. Var, 5 (2000), 591.  doi: 10.1051/cocv:2000123.  Google Scholar

[9]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Pitman, (1985).   Google Scholar

[10]

B. V. Kapitanov and M. A. Raupp, Exact boundary controllability in problems of transmission for the system of electromagneto-elastic,, Math. Meth. Appl. Sci, 24 (2001), 193.  doi: 10.1002/mma.205.  Google Scholar

[11]

V. Komornik, Boundary stabilization, observation and control of Maxwell's equations,, PanAm. Math. J, 4 (1994), 47.   Google Scholar

[12]

V. Komornik, Exact Controllability and Stabilization, the Multiplier Method,, RAM 36, (1994).   Google Scholar

[13]

J. E. Lagnese, Exact controllability of Maxwell's equations in a general region,, SIAM J. Control Optim, 27 (1989), 374.  doi: 10.1137/0327019.  Google Scholar

[14]

K. Laoubi and S. Nicaise, Polynomial stabilization of the wave equation with Ventcel's boundary conditions,, Math. Nachr, 283 (2010), 1428.  doi: 10.1002/mana.200710162.  Google Scholar

[15]

K. Lemrabet, Etude de Divers Problèmes aux Limites de Ventcel D'origine Physique ou Mécanique dans des Domaines non Réguliers,, Thesis, (1987).   Google Scholar

[16]

K. Lemrabet, Problème aux limites de Ventcel dans un domaine non régulier,, C. R. Acad. Sci. Paris Sér. I Math, 300 (1985), 531.   Google Scholar

[17]

J. L. Lions, Contrôlabilité Exacte, Perturbation et Stabilisation de Syst\`eme Distribués,, tome1, (1988).   Google Scholar

[18]

S. Nicaise, Stability and controllability of the electromagneto-elastic system,, Portugaliae mathematica, 60 (2003), 37.   Google Scholar

[19]

S. Nicaise, Exact boundary controllability of Maxwell's equations in heteregeneous media and an application to an inverse source problem,, SIAM J. Control and Opt, 38 (2000), 1145.  doi: 10.1137/S0363012998344373.  Google Scholar

[20]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[21]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,, Math. Surveys and Monographs, (1997).   Google Scholar

[22]

A. D. Wentzell (Ventcel), On boundary conditions for multi-dimensional diffusion processes,, Theor. Probab. Appl, 4 (1959), 164.  doi: 10.1137/1104014.  Google Scholar

show all references

References:
[1]

R. Bey, A. Heminna and J. P. Loheac, Boundary stabilization of a linear elastodynamic system with variable coefficients,, Electronic Journal of Differential Equations, 78 (2001), 1.   Google Scholar

[2]

M. Eller, J. E. Lagnese and S. Nicaise, Stabilization of heteregeneous Maxwell's equations by linear or nonlinear boundary feedbacks,, Electronic journal of differential equations, 21 (2002), 1.   Google Scholar

[3]

M. Eller, J. E. Lagnese and S. Nicaise, Decay rates for solutions of a Maxwell system with nonlinear boundary damping,, Comp. and Apppl. Math., 21 (2002), 135.   Google Scholar

[4]

A. Heminna, Contrôlabilité Exacte et Stabilisation Frontière de Divers Problèmes aux Limites Modélisant des Jonctions de Multi-structures,, Thesis, (2000).   Google Scholar

[5]

A. Heminna, Contrôlabilité exacte d'un problème avec conditions de Ventcel evolutives pour le système linéaire de l'elasticité,, Revista Matemàtica Complutense, 14 (2001), 231.  doi: 10.5209/rev_REMA.2001.v14.n1.17061.  Google Scholar

[6]

A. Heminna, Stabilisation frontière de l'équation des ondes avec condition de Ventcel,, Maghreb Math. Rev, 11 (2002), 165.   Google Scholar

[7]

A. Heminna, Stabilisation frontière de problèmes de Ventcel,, C. R. Acad. Sci. Paris Sèr. I Math, 328 (1999), 1171.  doi: 10.1016/S0764-4442(99)80434-0.  Google Scholar

[8]

A. Heminna, Stabilisation Frontière de Problèmes de Ventcel,, ESAIM Control Optim. Calc. Var, 5 (2000), 591.  doi: 10.1051/cocv:2000123.  Google Scholar

[9]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Pitman, (1985).   Google Scholar

[10]

B. V. Kapitanov and M. A. Raupp, Exact boundary controllability in problems of transmission for the system of electromagneto-elastic,, Math. Meth. Appl. Sci, 24 (2001), 193.  doi: 10.1002/mma.205.  Google Scholar

[11]

V. Komornik, Boundary stabilization, observation and control of Maxwell's equations,, PanAm. Math. J, 4 (1994), 47.   Google Scholar

[12]

V. Komornik, Exact Controllability and Stabilization, the Multiplier Method,, RAM 36, (1994).   Google Scholar

[13]

J. E. Lagnese, Exact controllability of Maxwell's equations in a general region,, SIAM J. Control Optim, 27 (1989), 374.  doi: 10.1137/0327019.  Google Scholar

[14]

K. Laoubi and S. Nicaise, Polynomial stabilization of the wave equation with Ventcel's boundary conditions,, Math. Nachr, 283 (2010), 1428.  doi: 10.1002/mana.200710162.  Google Scholar

[15]

K. Lemrabet, Etude de Divers Problèmes aux Limites de Ventcel D'origine Physique ou Mécanique dans des Domaines non Réguliers,, Thesis, (1987).   Google Scholar

[16]

K. Lemrabet, Problème aux limites de Ventcel dans un domaine non régulier,, C. R. Acad. Sci. Paris Sér. I Math, 300 (1985), 531.   Google Scholar

[17]

J. L. Lions, Contrôlabilité Exacte, Perturbation et Stabilisation de Syst\`eme Distribués,, tome1, (1988).   Google Scholar

[18]

S. Nicaise, Stability and controllability of the electromagneto-elastic system,, Portugaliae mathematica, 60 (2003), 37.   Google Scholar

[19]

S. Nicaise, Exact boundary controllability of Maxwell's equations in heteregeneous media and an application to an inverse source problem,, SIAM J. Control and Opt, 38 (2000), 1145.  doi: 10.1137/S0363012998344373.  Google Scholar

[20]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[21]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,, Math. Surveys and Monographs, (1997).   Google Scholar

[22]

A. D. Wentzell (Ventcel), On boundary conditions for multi-dimensional diffusion processes,, Theor. Probab. Appl, 4 (1959), 164.  doi: 10.1137/1104014.  Google Scholar

[1]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[2]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[3]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[4]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[5]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[6]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[7]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[8]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[9]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[10]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[11]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[12]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[13]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[14]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[15]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[16]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[17]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[18]

Yubiao Liu, Chunguo Zhang, Tehuan Chen. Stabilization of 2-d Mindlin-Timoshenko plates with localized acoustic boundary feedback. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021006

[19]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[20]

Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]