Citation: |
[1] |
R. Bey, A. Heminna and J. P. Loheac, Boundary stabilization of a linear elastodynamic system with variable coefficients, Electronic Journal of Differential Equations, 78 (2001), 1-23. |
[2] |
M. Eller, J. E. Lagnese and S. Nicaise, Stabilization of heteregeneous Maxwell's equations by linear or nonlinear boundary feedbacks, Electronic journal of differential equations, 21 (2002), 1-26. |
[3] |
M. Eller, J. E. Lagnese and S. Nicaise, Decay rates for solutions of a Maxwell system with nonlinear boundary damping, Comp. and Apppl. Math., 21 (2002), 135-165. |
[4] |
A. Heminna, Contrôlabilité Exacte et Stabilisation Frontière de Divers Problèmes aux Limites Modélisant des Jonctions de Multi-structures, Thesis, U.S.T.H.B, Alger, 2000. |
[5] |
A. Heminna, Contrôlabilité exacte d'un problème avec conditions de Ventcel evolutives pour le système linéaire de l'elasticité, Revista Matemàtica Complutense, 14 (2001), 231-270.doi: 10.5209/rev_REMA.2001.v14.n1.17061. |
[6] |
A. Heminna, Stabilisation frontière de l'équation des ondes avec condition de Ventcel, Maghreb Math. Rev, 11 (2002), 165-196. |
[7] |
A. Heminna, Stabilisation frontière de problèmes de Ventcel, C. R. Acad. Sci. Paris Sèr. I Math, 328 (1999), 1171-1174.doi: 10.1016/S0764-4442(99)80434-0. |
[8] |
A. Heminna, Stabilisation Frontière de Problèmes de Ventcel, ESAIM Control Optim. Calc. Var, 5 (2000), 591-622.doi: 10.1051/cocv:2000123. |
[9] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston-London-Melbourne, 1985. |
[10] |
B. V. Kapitanov and M. A. Raupp, Exact boundary controllability in problems of transmission for the system of electromagneto-elastic, Math. Meth. Appl. Sci, 24 (2001), 193-207.doi: 10.1002/mma.205. |
[11] |
V. Komornik, Boundary stabilization, observation and control of Maxwell's equations, PanAm. Math. J, 4 (1994), 47-61. |
[12] |
V. Komornik, Exact Controllability and Stabilization, the Multiplier Method, RAM 36, Masson, Paris, 1994. |
[13] |
J. E. Lagnese, Exact controllability of Maxwell's equations in a general region, SIAM J. Control Optim, 27 (1989), 374-388.doi: 10.1137/0327019. |
[14] |
K. Laoubi and S. Nicaise, Polynomial stabilization of the wave equation with Ventcel's boundary conditions, Math. Nachr, 283 (2010), 1428-1438.doi: 10.1002/mana.200710162. |
[15] |
K. Lemrabet, Etude de Divers Problèmes aux Limites de Ventcel D'origine Physique ou Mécanique dans des Domaines non Réguliers, Thesis, U.S.T.H.B, Alger, 1987. |
[16] |
K. Lemrabet, Problème aux limites de Ventcel dans un domaine non régulier, C. R. Acad. Sci. Paris Sér. I Math, 300 (1985), 531-534. |
[17] |
J. L. Lions, Contrôlabilité Exacte, Perturbation et Stabilisation de Syst\`eme Distribués, tome1, Masson, 1988. |
[18] |
S. Nicaise, Stability and controllability of the electromagneto-elastic system, Portugaliae mathematica, 60 (2003), 37-70. |
[19] |
S. Nicaise, Exact boundary controllability of Maxwell's equations in heteregeneous media and an application to an inverse source problem, SIAM J. Control and Opt, 38 (2000), 1145-1170.doi: 10.1137/S0363012998344373. |
[20] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, 1983.doi: 10.1007/978-1-4612-5561-1. |
[21] |
R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Math. Surveys and Monographs, 49, AMS, 1997. |
[22] |
A. D. Wentzell (Ventcel), On boundary conditions for multi-dimensional diffusion processes, Theor. Probab. Appl, 4 (1959), 164-177.doi: 10.1137/1104014. |