June  2016, 5(2): 235-250. doi: 10.3934/eect.2016003

Exponential stability of a coupled system with Wentzell conditions

1. 

Laboratoire AMNEDP, Mathematics Department, USTHB, BP 32 El-Alia, Bab-Ezzouar, Algiers, Algeria, Algeria

Received  February 2016 Revised  April 2016 Published  June 2016

A coupled system of hyperbolic equations in Maxwell/wave with Wentzell conditions in a bounded domain of $\mathbb{R}^3$ is considered. Under suitable assumptions, we show the exponential stability of the system. Our method is based on an identity with multipliers that allows to show an appropriate stability estimate.
Citation: Hichem Kasri, Amar Heminna. Exponential stability of a coupled system with Wentzell conditions. Evolution Equations & Control Theory, 2016, 5 (2) : 235-250. doi: 10.3934/eect.2016003
References:
[1]

R. Bey, A. Heminna and J. P. Loheac, Boundary stabilization of a linear elastodynamic system with variable coefficients,, Electronic Journal of Differential Equations, 78 (2001), 1.   Google Scholar

[2]

M. Eller, J. E. Lagnese and S. Nicaise, Stabilization of heteregeneous Maxwell's equations by linear or nonlinear boundary feedbacks,, Electronic journal of differential equations, 21 (2002), 1.   Google Scholar

[3]

M. Eller, J. E. Lagnese and S. Nicaise, Decay rates for solutions of a Maxwell system with nonlinear boundary damping,, Comp. and Apppl. Math., 21 (2002), 135.   Google Scholar

[4]

A. Heminna, Contrôlabilité Exacte et Stabilisation Frontière de Divers Problèmes aux Limites Modélisant des Jonctions de Multi-structures,, Thesis, (2000).   Google Scholar

[5]

A. Heminna, Contrôlabilité exacte d'un problème avec conditions de Ventcel evolutives pour le système linéaire de l'elasticité,, Revista Matemàtica Complutense, 14 (2001), 231.  doi: 10.5209/rev_REMA.2001.v14.n1.17061.  Google Scholar

[6]

A. Heminna, Stabilisation frontière de l'équation des ondes avec condition de Ventcel,, Maghreb Math. Rev, 11 (2002), 165.   Google Scholar

[7]

A. Heminna, Stabilisation frontière de problèmes de Ventcel,, C. R. Acad. Sci. Paris Sèr. I Math, 328 (1999), 1171.  doi: 10.1016/S0764-4442(99)80434-0.  Google Scholar

[8]

A. Heminna, Stabilisation Frontière de Problèmes de Ventcel,, ESAIM Control Optim. Calc. Var, 5 (2000), 591.  doi: 10.1051/cocv:2000123.  Google Scholar

[9]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Pitman, (1985).   Google Scholar

[10]

B. V. Kapitanov and M. A. Raupp, Exact boundary controllability in problems of transmission for the system of electromagneto-elastic,, Math. Meth. Appl. Sci, 24 (2001), 193.  doi: 10.1002/mma.205.  Google Scholar

[11]

V. Komornik, Boundary stabilization, observation and control of Maxwell's equations,, PanAm. Math. J, 4 (1994), 47.   Google Scholar

[12]

V. Komornik, Exact Controllability and Stabilization, the Multiplier Method,, RAM 36, (1994).   Google Scholar

[13]

J. E. Lagnese, Exact controllability of Maxwell's equations in a general region,, SIAM J. Control Optim, 27 (1989), 374.  doi: 10.1137/0327019.  Google Scholar

[14]

K. Laoubi and S. Nicaise, Polynomial stabilization of the wave equation with Ventcel's boundary conditions,, Math. Nachr, 283 (2010), 1428.  doi: 10.1002/mana.200710162.  Google Scholar

[15]

K. Lemrabet, Etude de Divers Problèmes aux Limites de Ventcel D'origine Physique ou Mécanique dans des Domaines non Réguliers,, Thesis, (1987).   Google Scholar

[16]

K. Lemrabet, Problème aux limites de Ventcel dans un domaine non régulier,, C. R. Acad. Sci. Paris Sér. I Math, 300 (1985), 531.   Google Scholar

[17]

J. L. Lions, Contrôlabilité Exacte, Perturbation et Stabilisation de Syst\`eme Distribués,, tome1, (1988).   Google Scholar

[18]

S. Nicaise, Stability and controllability of the electromagneto-elastic system,, Portugaliae mathematica, 60 (2003), 37.   Google Scholar

[19]

S. Nicaise, Exact boundary controllability of Maxwell's equations in heteregeneous media and an application to an inverse source problem,, SIAM J. Control and Opt, 38 (2000), 1145.  doi: 10.1137/S0363012998344373.  Google Scholar

[20]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[21]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,, Math. Surveys and Monographs, (1997).   Google Scholar

[22]

A. D. Wentzell (Ventcel), On boundary conditions for multi-dimensional diffusion processes,, Theor. Probab. Appl, 4 (1959), 164.  doi: 10.1137/1104014.  Google Scholar

show all references

References:
[1]

R. Bey, A. Heminna and J. P. Loheac, Boundary stabilization of a linear elastodynamic system with variable coefficients,, Electronic Journal of Differential Equations, 78 (2001), 1.   Google Scholar

[2]

M. Eller, J. E. Lagnese and S. Nicaise, Stabilization of heteregeneous Maxwell's equations by linear or nonlinear boundary feedbacks,, Electronic journal of differential equations, 21 (2002), 1.   Google Scholar

[3]

M. Eller, J. E. Lagnese and S. Nicaise, Decay rates for solutions of a Maxwell system with nonlinear boundary damping,, Comp. and Apppl. Math., 21 (2002), 135.   Google Scholar

[4]

A. Heminna, Contrôlabilité Exacte et Stabilisation Frontière de Divers Problèmes aux Limites Modélisant des Jonctions de Multi-structures,, Thesis, (2000).   Google Scholar

[5]

A. Heminna, Contrôlabilité exacte d'un problème avec conditions de Ventcel evolutives pour le système linéaire de l'elasticité,, Revista Matemàtica Complutense, 14 (2001), 231.  doi: 10.5209/rev_REMA.2001.v14.n1.17061.  Google Scholar

[6]

A. Heminna, Stabilisation frontière de l'équation des ondes avec condition de Ventcel,, Maghreb Math. Rev, 11 (2002), 165.   Google Scholar

[7]

A. Heminna, Stabilisation frontière de problèmes de Ventcel,, C. R. Acad. Sci. Paris Sèr. I Math, 328 (1999), 1171.  doi: 10.1016/S0764-4442(99)80434-0.  Google Scholar

[8]

A. Heminna, Stabilisation Frontière de Problèmes de Ventcel,, ESAIM Control Optim. Calc. Var, 5 (2000), 591.  doi: 10.1051/cocv:2000123.  Google Scholar

[9]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Pitman, (1985).   Google Scholar

[10]

B. V. Kapitanov and M. A. Raupp, Exact boundary controllability in problems of transmission for the system of electromagneto-elastic,, Math. Meth. Appl. Sci, 24 (2001), 193.  doi: 10.1002/mma.205.  Google Scholar

[11]

V. Komornik, Boundary stabilization, observation and control of Maxwell's equations,, PanAm. Math. J, 4 (1994), 47.   Google Scholar

[12]

V. Komornik, Exact Controllability and Stabilization, the Multiplier Method,, RAM 36, (1994).   Google Scholar

[13]

J. E. Lagnese, Exact controllability of Maxwell's equations in a general region,, SIAM J. Control Optim, 27 (1989), 374.  doi: 10.1137/0327019.  Google Scholar

[14]

K. Laoubi and S. Nicaise, Polynomial stabilization of the wave equation with Ventcel's boundary conditions,, Math. Nachr, 283 (2010), 1428.  doi: 10.1002/mana.200710162.  Google Scholar

[15]

K. Lemrabet, Etude de Divers Problèmes aux Limites de Ventcel D'origine Physique ou Mécanique dans des Domaines non Réguliers,, Thesis, (1987).   Google Scholar

[16]

K. Lemrabet, Problème aux limites de Ventcel dans un domaine non régulier,, C. R. Acad. Sci. Paris Sér. I Math, 300 (1985), 531.   Google Scholar

[17]

J. L. Lions, Contrôlabilité Exacte, Perturbation et Stabilisation de Syst\`eme Distribués,, tome1, (1988).   Google Scholar

[18]

S. Nicaise, Stability and controllability of the electromagneto-elastic system,, Portugaliae mathematica, 60 (2003), 37.   Google Scholar

[19]

S. Nicaise, Exact boundary controllability of Maxwell's equations in heteregeneous media and an application to an inverse source problem,, SIAM J. Control and Opt, 38 (2000), 1145.  doi: 10.1137/S0363012998344373.  Google Scholar

[20]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[21]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,, Math. Surveys and Monographs, (1997).   Google Scholar

[22]

A. D. Wentzell (Ventcel), On boundary conditions for multi-dimensional diffusion processes,, Theor. Probab. Appl, 4 (1959), 164.  doi: 10.1137/1104014.  Google Scholar

[1]

Nicolas Fourrier, Irena Lasiecka. Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions. Evolution Equations & Control Theory, 2013, 2 (4) : 631-667. doi: 10.3934/eect.2013.2.631

[2]

Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603

[3]

Khalid Latrach, Hatem Megdiche. Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 305-321. doi: 10.3934/dcds.2011.29.305

[4]

Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029

[5]

Giuseppe Maria Coclite, Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Continuous dependence in hyperbolic problems with Wentzell boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (1) : 419-433. doi: 10.3934/cpaa.2014.13.419

[6]

Ciprian G. Gal, Hao Wu. Asymptotic behavior of a Cahn-Hilliard equation with Wentzell boundary conditions and mass conservation. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 1041-1063. doi: 10.3934/dcds.2008.22.1041

[7]

Florian Monteghetti, Ghislain Haine, Denis Matignon. Asymptotic stability of the multidimensional wave equation coupled with classes of positive-real impedance boundary conditions. Mathematical Control & Related Fields, 2019, 9 (4) : 759-791. doi: 10.3934/mcrf.2019049

[8]

Vesselin Petkov. Location of eigenvalues for the wave equation with dissipative boundary conditions. Inverse Problems & Imaging, 2016, 10 (4) : 1111-1139. doi: 10.3934/ipi.2016034

[9]

Davide Guidetti. Parabolic problems with general Wentzell boundary conditions and diffusion on the boundary. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1401-1417. doi: 10.3934/cpaa.2016.15.1401

[10]

J. J. Morgan, Hong-Ming Yin. On Maxwell's system with a thermal effect. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 485-494. doi: 10.3934/dcdsb.2001.1.485

[11]

Genni Fragnelli, Gisèle Ruiz Goldstein, Jerome Goldstein, Rosa Maria Mininni, Silvia Romanelli. Generalized Wentzell boundary conditions for second order operators with interior degeneracy. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 697-715. doi: 10.3934/dcdss.2016023

[12]

Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Enrico Obrecht, Silvia Romanelli. Nonsymmetric elliptic operators with Wentzell boundary conditions in general domains. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2475-2487. doi: 10.3934/cpaa.2016045

[13]

Mahamadi Warma. Semi linear parabolic equations with nonlinear general Wentzell boundary conditions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5493-5506. doi: 10.3934/dcds.2013.33.5493

[14]

Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305

[15]

Guanggan Chen, Jian Zhang. Asymptotic behavior for a stochastic wave equation with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1441-1453. doi: 10.3934/dcdsb.2012.17.1441

[16]

Michael Renardy. A backward uniqueness result for the wave equation with absorbing boundary conditions. Evolution Equations & Control Theory, 2015, 4 (3) : 347-353. doi: 10.3934/eect.2015.4.347

[17]

Arnaud Heibig, Mohand Moussaoui. Exact controllability of the wave equation for domains with slits and for mixed boundary conditions. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 367-386. doi: 10.3934/dcds.1996.2.367

[18]

Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001

[19]

Jiann-Sheng Jiang, Chi-Kun Lin, Chi-Hua Liu. Homogenization of the Maxwell's system for conducting media. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 91-107. doi: 10.3934/dcdsb.2008.10.91

[20]

Martin Gugat, Günter Leugering, Ke Wang. Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function. Mathematical Control & Related Fields, 2017, 7 (3) : 419-448. doi: 10.3934/mcrf.2017015

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]