\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Exponential stability of a coupled system with Wentzell conditions

Abstract Related Papers Cited by
  • A coupled system of hyperbolic equations in Maxwell/wave with Wentzell conditions in a bounded domain of $\mathbb{R}^3$ is considered. Under suitable assumptions, we show the exponential stability of the system. Our method is based on an identity with multipliers that allows to show an appropriate stability estimate.
    Mathematics Subject Classification: Primary: 93C20; Secondary: 93D15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Bey, A. Heminna and J. P. Loheac, Boundary stabilization of a linear elastodynamic system with variable coefficients, Electronic Journal of Differential Equations, 78 (2001), 1-23.

    [2]

    M. Eller, J. E. Lagnese and S. Nicaise, Stabilization of heteregeneous Maxwell's equations by linear or nonlinear boundary feedbacks, Electronic journal of differential equations, 21 (2002), 1-26.

    [3]

    M. Eller, J. E. Lagnese and S. Nicaise, Decay rates for solutions of a Maxwell system with nonlinear boundary damping, Comp. and Apppl. Math., 21 (2002), 135-165.

    [4]

    A. Heminna, Contrôlabilité Exacte et Stabilisation Frontière de Divers Problèmes aux Limites Modélisant des Jonctions de Multi-structures, Thesis, U.S.T.H.B, Alger, 2000.

    [5]

    A. Heminna, Contrôlabilité exacte d'un problème avec conditions de Ventcel evolutives pour le système linéaire de l'elasticité, Revista Matemàtica Complutense, 14 (2001), 231-270.doi: 10.5209/rev_REMA.2001.v14.n1.17061.

    [6]

    A. Heminna, Stabilisation frontière de l'équation des ondes avec condition de Ventcel, Maghreb Math. Rev, 11 (2002), 165-196.

    [7]

    A. Heminna, Stabilisation frontière de problèmes de Ventcel, C. R. Acad. Sci. Paris Sèr. I Math, 328 (1999), 1171-1174.doi: 10.1016/S0764-4442(99)80434-0.

    [8]

    A. Heminna, Stabilisation Frontière de Problèmes de Ventcel, ESAIM Control Optim. Calc. Var, 5 (2000), 591-622.doi: 10.1051/cocv:2000123.

    [9]

    P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston-London-Melbourne, 1985.

    [10]

    B. V. Kapitanov and M. A. Raupp, Exact boundary controllability in problems of transmission for the system of electromagneto-elastic, Math. Meth. Appl. Sci, 24 (2001), 193-207.doi: 10.1002/mma.205.

    [11]

    V. Komornik, Boundary stabilization, observation and control of Maxwell's equations, PanAm. Math. J, 4 (1994), 47-61.

    [12]

    V. Komornik, Exact Controllability and Stabilization, the Multiplier Method, RAM 36, Masson, Paris, 1994.

    [13]

    J. E. Lagnese, Exact controllability of Maxwell's equations in a general region, SIAM J. Control Optim, 27 (1989), 374-388.doi: 10.1137/0327019.

    [14]

    K. Laoubi and S. Nicaise, Polynomial stabilization of the wave equation with Ventcel's boundary conditions, Math. Nachr, 283 (2010), 1428-1438.doi: 10.1002/mana.200710162.

    [15]

    K. Lemrabet, Etude de Divers Problèmes aux Limites de Ventcel D'origine Physique ou Mécanique dans des Domaines non Réguliers, Thesis, U.S.T.H.B, Alger, 1987.

    [16]

    K. Lemrabet, Problème aux limites de Ventcel dans un domaine non régulier, C. R. Acad. Sci. Paris Sér. I Math, 300 (1985), 531-534.

    [17]

    J. L. Lions, Contrôlabilité Exacte, Perturbation et Stabilisation de Syst\`eme Distribués, tome1, Masson, 1988.

    [18]

    S. Nicaise, Stability and controllability of the electromagneto-elastic system, Portugaliae mathematica, 60 (2003), 37-70.

    [19]

    S. Nicaise, Exact boundary controllability of Maxwell's equations in heteregeneous media and an application to an inverse source problem, SIAM J. Control and Opt, 38 (2000), 1145-1170.doi: 10.1137/S0363012998344373.

    [20]

    A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, 1983.doi: 10.1007/978-1-4612-5561-1.

    [21]

    R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Math. Surveys and Monographs, 49, AMS, 1997.

    [22]

    A. D. Wentzell (Ventcel), On boundary conditions for multi-dimensional diffusion processes, Theor. Probab. Appl, 4 (1959), 164-177.doi: 10.1137/1104014.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(138) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return