June  2016, 5(2): 273-302. doi: 10.3934/eect.2016005

New methods for local solvability of quasilinear symmetric hyperbolic systems

1. 

Department of Mathematics and Statistics, Air Force Institute of Technology, 2950 Hobson Way, Wright Patterson Air Force Base, OH 45433, United States

2. 

Office of the Provost & Vice Chancellor, Air Force Institute of Technology, 2950 Hobson Way, Wright Patterson Air Force Base, OH 45433, United States

Received  January 2016 Revised  May 2016 Published  June 2016

In this work we establish the local solvability of quasilinear symmetric hyperbolic system using local monotonicity method and frequency truncation method. The existence of an optimal control is also proved as an application of these methods.
Citation: Manil T. Mohan, Sivaguru S. Sritharan. New methods for local solvability of quasilinear symmetric hyperbolic systems. Evolution Equations & Control Theory, 2016, 5 (2) : 273-302. doi: 10.3934/eect.2016005
References:
[1]

J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis,, Dover Publications, (2006). Google Scholar

[2]

V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems,, Mathematics in Science and Engineering, (1993). Google Scholar

[3]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, Third Edition, (2010). doi: 10.1007/978-3-642-04048-1. Google Scholar

[4]

C. L. Fefferman, D. S. McCormick, J. C. Robinson and J. L. Rodrigo, Higher order commutator estimates and local existence for the non-resistive MHD equations and related models,, Journal of Functional Analysis, 267 (2014), 1035. doi: 10.1016/j.jfa.2014.03.021. Google Scholar

[5]

B. P. W. Fernando, S. S. Sritharan and M. Xu, A simple proof of global solvability of 2-D Navier-Stokes equations in unbounded domains,, Differential and Integral Equations, 23 (2010), 223. Google Scholar

[6]

J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications,, Volume 1, (1972). doi: 10.1007/978-3-642-65161-8. Google Scholar

[7]

T. Kato, Quasilinear equations of evolution, with applications to partial differential equations,, in Spectral Theory and Differential Equations, 448 (1975), 25. doi: 10.1007/BFb0067080. Google Scholar

[8]

T. Kato, The Cauchy problem for quasilinear symmetric hyperbolic systems,, Archive for Rational Mechanics and Analysis, 58 (1975), 181. doi: 10.1007/BF00280740. Google Scholar

[9]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations,, Communications in Pure and Applied Mathematics, 41 (1988), 891. doi: 10.1002/cpa.3160410704. Google Scholar

[10]

P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves,, CBMS-NSF Regional Conference Series in Applied Mathematics, (1973). doi: 10.1137/1.9781611970562. Google Scholar

[11]

P. D. Lax, Hyperbolic Partial Differential Equations,, Lecture Notes, 14 (2006). Google Scholar

[12]

A. J. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables,, Applied Mathematical Sciences, 53 (1984). doi: 10.1007/978-1-4612-1116-7. Google Scholar

[13]

A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow,, Cambridge Text Appl. Math., 27 (2002). Google Scholar

[14]

J. L. Menaldi and S. S. Sritharan, Stochastic 2-D Navier-Stokes equation,, Applied Mathematics and Optimization, 46 (2002), 31. doi: 10.1007/s00245-002-0734-6. Google Scholar

[15]

U. Manna, M. T. Mohan and S. S. Sritharan, Stochastic non-resistive magnetohydrodynamic system with Lévy noise,, Submitted for Journal Publication., (). Google Scholar

[16]

M. T. Mohan and S. S. Sritharan, Stochastic Euler equations of fluid dynamics with Lévy noise,, Submitted for Journal Publication., (). Google Scholar

[17]

S. S. Sritharan, An optimal control problem in exterior hydrodynamics,, Proceedings of the Royal Society of Edinburgh, 121 (1992), 5. doi: 10.1017/S0308210500014128. Google Scholar

[18]

S. S. Sritharan, An introduction to deterministic and stochastic control of viscous flow,, in Optimal Control of Viscous Flow (ed. S. S. Sritharan), (1998), 1. doi: 10.1137/1.9781611971415. Google Scholar

[19]

S. S. Sritharan and P. Sundar, Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise,, Stochastic Processes and their Applications, 116 (2006), 1636. doi: 10.1016/j.spa.2006.04.001. Google Scholar

[20]

M. E. Taylor, Pseudodifferential Operators and Nonlinear PDE,, Springer Science & Business Media LLC, (1991). doi: 10.1007/978-1-4612-0431-2. Google Scholar

[21]

M. E. Taylor, Partial Differential Equations III, Nonlinear Equations,, Springer-Verlag, (1997). doi: 10.1007/978-1-4419-7049-7. Google Scholar

[22]

M. E. Taylor, Tools for PDE, Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials,, Mathematical Surveys and Monographs, 81 (2000). Google Scholar

show all references

References:
[1]

J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis,, Dover Publications, (2006). Google Scholar

[2]

V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems,, Mathematics in Science and Engineering, (1993). Google Scholar

[3]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, Third Edition, (2010). doi: 10.1007/978-3-642-04048-1. Google Scholar

[4]

C. L. Fefferman, D. S. McCormick, J. C. Robinson and J. L. Rodrigo, Higher order commutator estimates and local existence for the non-resistive MHD equations and related models,, Journal of Functional Analysis, 267 (2014), 1035. doi: 10.1016/j.jfa.2014.03.021. Google Scholar

[5]

B. P. W. Fernando, S. S. Sritharan and M. Xu, A simple proof of global solvability of 2-D Navier-Stokes equations in unbounded domains,, Differential and Integral Equations, 23 (2010), 223. Google Scholar

[6]

J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications,, Volume 1, (1972). doi: 10.1007/978-3-642-65161-8. Google Scholar

[7]

T. Kato, Quasilinear equations of evolution, with applications to partial differential equations,, in Spectral Theory and Differential Equations, 448 (1975), 25. doi: 10.1007/BFb0067080. Google Scholar

[8]

T. Kato, The Cauchy problem for quasilinear symmetric hyperbolic systems,, Archive for Rational Mechanics and Analysis, 58 (1975), 181. doi: 10.1007/BF00280740. Google Scholar

[9]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations,, Communications in Pure and Applied Mathematics, 41 (1988), 891. doi: 10.1002/cpa.3160410704. Google Scholar

[10]

P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves,, CBMS-NSF Regional Conference Series in Applied Mathematics, (1973). doi: 10.1137/1.9781611970562. Google Scholar

[11]

P. D. Lax, Hyperbolic Partial Differential Equations,, Lecture Notes, 14 (2006). Google Scholar

[12]

A. J. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables,, Applied Mathematical Sciences, 53 (1984). doi: 10.1007/978-1-4612-1116-7. Google Scholar

[13]

A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow,, Cambridge Text Appl. Math., 27 (2002). Google Scholar

[14]

J. L. Menaldi and S. S. Sritharan, Stochastic 2-D Navier-Stokes equation,, Applied Mathematics and Optimization, 46 (2002), 31. doi: 10.1007/s00245-002-0734-6. Google Scholar

[15]

U. Manna, M. T. Mohan and S. S. Sritharan, Stochastic non-resistive magnetohydrodynamic system with Lévy noise,, Submitted for Journal Publication., (). Google Scholar

[16]

M. T. Mohan and S. S. Sritharan, Stochastic Euler equations of fluid dynamics with Lévy noise,, Submitted for Journal Publication., (). Google Scholar

[17]

S. S. Sritharan, An optimal control problem in exterior hydrodynamics,, Proceedings of the Royal Society of Edinburgh, 121 (1992), 5. doi: 10.1017/S0308210500014128. Google Scholar

[18]

S. S. Sritharan, An introduction to deterministic and stochastic control of viscous flow,, in Optimal Control of Viscous Flow (ed. S. S. Sritharan), (1998), 1. doi: 10.1137/1.9781611971415. Google Scholar

[19]

S. S. Sritharan and P. Sundar, Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise,, Stochastic Processes and their Applications, 116 (2006), 1636. doi: 10.1016/j.spa.2006.04.001. Google Scholar

[20]

M. E. Taylor, Pseudodifferential Operators and Nonlinear PDE,, Springer Science & Business Media LLC, (1991). doi: 10.1007/978-1-4612-0431-2. Google Scholar

[21]

M. E. Taylor, Partial Differential Equations III, Nonlinear Equations,, Springer-Verlag, (1997). doi: 10.1007/978-1-4419-7049-7. Google Scholar

[22]

M. E. Taylor, Tools for PDE, Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials,, Mathematical Surveys and Monographs, 81 (2000). Google Scholar

[1]

Eduardo Casas, Konstantinos Chrysafinos. Analysis and optimal control of some quasilinear parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 607-623. doi: 10.3934/mcrf.2018025

[2]

Volodymyr O. Kapustyan, Ivan O. Pyshnograiev, Olena A. Kapustian. Quasi-optimal control with a general quadratic criterion in a special norm for systems described by parabolic-hyperbolic equations with non-local boundary conditions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1243-1258. doi: 10.3934/dcdsb.2019014

[3]

Lucas Bonifacius, Ira Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic equations. Mathematical Control & Related Fields, 2018, 8 (1) : 1-34. doi: 10.3934/mcrf.2018001

[4]

Serge Nicaise, Fredi Tröltzsch. Optimal control of some quasilinear Maxwell equations of parabolic type. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1375-1391. doi: 10.3934/dcdss.2017073

[5]

Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473

[6]

Thierry Daudé, Damien Gobin, François Nicoleau. Local inverse scattering at fixed energy in spherically symmetric asymptotically hyperbolic manifolds. Inverse Problems & Imaging, 2016, 10 (3) : 659-688. doi: 10.3934/ipi.2016016

[7]

Kim Dang Phung. Carleman commutator approach in logarithmic convexity for parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 899-933. doi: 10.3934/mcrf.2018040

[8]

Luca Di Persio, Giacomo Ziglio. Gaussian estimates on networks with applications to optimal control. Networks & Heterogeneous Media, 2011, 6 (2) : 279-296. doi: 10.3934/nhm.2011.6.279

[9]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[10]

Hongjie Dong, Doyoon Kim. Schauder estimates for a class of non-local elliptic equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2319-2347. doi: 10.3934/dcds.2013.33.2319

[11]

Emmanuele DiBenedetto, Ugo Gianazza and Vincenzo Vespri. Intrinsic Harnack estimates for nonnegative local solutions of degenerate parabolic equations. Electronic Research Announcements, 2006, 12: 95-99.

[12]

Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1925-1932. doi: 10.3934/cpaa.2009.8.1925

[13]

Luisa Faella, Carmen Perugia. Optimal control for a hyperbolic problem in composites with imperfect interface: A memory effect. Evolution Equations & Control Theory, 2017, 6 (2) : 187-217. doi: 10.3934/eect.2017011

[14]

Hee-Dae Kwon, Jeehyun Lee, Sung-Dae Yang. Eigenseries solutions to optimal control problem and controllability problems on hyperbolic PDEs. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 305-325. doi: 10.3934/dcdsb.2010.13.305

[15]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations & Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195

[16]

Luca Capogna. Optimal regularity for quasilinear equations in stratified nilpotent Lie groups and applications. Electronic Research Announcements, 1996, 2: 60-68.

[17]

Heinz Schättler, Urszula Ledzewicz, Helmut Maurer. Sufficient conditions for strong local optimality in optimal control problems with $L_{2}$-type objectives and control constraints. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2657-2679. doi: 10.3934/dcdsb.2014.19.2657

[18]

Jerzy Klamka, Helmut Maurer, Andrzej Swierniak. Local controllability and optimal control for\newline a model of combined anticancer therapy with control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 195-216. doi: 10.3934/mbe.2017013

[19]

Tatiana Filippova. Differential equations of ellipsoidal state estimates in nonlinear control problems under uncertainty. Conference Publications, 2011, 2011 (Special) : 410-419. doi: 10.3934/proc.2011.2011.410

[20]

Urszula Ledzewicz, Stanislaw Walczak. Optimal control of systems governed by some elliptic equations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 279-290. doi: 10.3934/dcds.1999.5.279

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]