-
Previous Article
Continuous maximal regularity on singular manifolds and its applications
- EECT Home
- This Issue
-
Next Article
On a parabolic-hyperbolic filter for multicolor image noise reduction
New methods for local solvability of quasilinear symmetric hyperbolic systems
1. | Department of Mathematics and Statistics, Air Force Institute of Technology, 2950 Hobson Way, Wright Patterson Air Force Base, OH 45433, United States |
2. | Office of the Provost & Vice Chancellor, Air Force Institute of Technology, 2950 Hobson Way, Wright Patterson Air Force Base, OH 45433, United States |
References:
[1] |
J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Dover Publications, Inc., Mineola, New York, 2006. |
[2] |
V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, Mathematics in Science and Engineering, vol. 190, Academic Press Inc., Boston, MA, 1993. |
[3] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Third Edition, Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-04048-1. |
[4] |
C. L. Fefferman, D. S. McCormick, J. C. Robinson and J. L. Rodrigo, Higher order commutator estimates and local existence for the non-resistive MHD equations and related models, Journal of Functional Analysis, 267 (2014), 1035-1056.
doi: 10.1016/j.jfa.2014.03.021. |
[5] |
B. P. W. Fernando, S. S. Sritharan and M. Xu, A simple proof of global solvability of 2-D Navier-Stokes equations in unbounded domains, Differential and Integral Equations, 23 (2010), 223-235. |
[6] |
J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Volume 1, Springer-Verlag, New York-Heidelberg, 1972.
doi: 10.1007/978-3-642-65161-8. |
[7] |
T. Kato, Quasilinear equations of evolution, with applications to partial differential equations, in Spectral Theory and Differential Equations, Lecture Notes in Mathematics, 448 (1975), 25-70.
doi: 10.1007/BFb0067080. |
[8] |
T. Kato, The Cauchy problem for quasilinear symmetric hyperbolic systems, Archive for Rational Mechanics and Analysis, 58 (1975), 181-205.
doi: 10.1007/BF00280740. |
[9] |
T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Communications in Pure and Applied Mathematics, 41 (1988), 891-907.
doi: 10.1002/cpa.3160410704. |
[10] |
P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, CBMS-NSF Regional Conference Series in Applied Mathematics, No. 11, SIAM, Philadelphia, 1973.
doi: 10.1137/1.9781611970562. |
[11] |
P. D. Lax, Hyperbolic Partial Differential Equations, Lecture Notes, 14, Courant Institute of Mathematical Science, American Mathematical Society, Providence, Rhode Island, 2006. |
[12] |
A. J. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, Vol. 53, Springer-Verlag, New York, 1984.
doi: 10.1007/978-1-4612-1116-7. |
[13] |
A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Text Appl. Math., No. 27, Cambridge University Press, Cambridge, 2002. |
[14] |
J. L. Menaldi and S. S. Sritharan, Stochastic 2-D Navier-Stokes equation, Applied Mathematics and Optimization, 46 (2002), 31-53.
doi: 10.1007/s00245-002-0734-6. |
[15] |
U. Manna, M. T. Mohan and S. S. Sritharan, Stochastic non-resistive magnetohydrodynamic system with Lévy noise,, Submitted for Journal Publication., ().
|
[16] |
M. T. Mohan and S. S. Sritharan, Stochastic Euler equations of fluid dynamics with Lévy noise,, Submitted for Journal Publication., ().
|
[17] |
S. S. Sritharan, An optimal control problem in exterior hydrodynamics, Proceedings of the Royal Society of Edinburgh, 121 (1992), 5-32.
doi: 10.1017/S0308210500014128. |
[18] |
S. S. Sritharan, An introduction to deterministic and stochastic control of viscous flow, in Optimal Control of Viscous Flow (ed. S. S. Sritharan), SIAM, Philadelphia, (1998), 1-42.
doi: 10.1137/1.9781611971415. |
[19] |
S. S. Sritharan and P. Sundar, Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise, Stochastic Processes and their Applications, 116 (2006), 1636-1659.
doi: 10.1016/j.spa.2006.04.001. |
[20] |
M. E. Taylor, Pseudodifferential Operators and Nonlinear PDE, Springer Science & Business Media LLC, Birkhäuser, Boston, 1991.
doi: 10.1007/978-1-4612-0431-2. |
[21] |
M. E. Taylor, Partial Differential Equations III, Nonlinear Equations, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4419-7049-7. |
[22] |
M. E. Taylor, Tools for PDE, Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Mathematical Surveys and Monographs, Vol. 81, American Mathematical Society, 2000. |
show all references
References:
[1] |
J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Dover Publications, Inc., Mineola, New York, 2006. |
[2] |
V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, Mathematics in Science and Engineering, vol. 190, Academic Press Inc., Boston, MA, 1993. |
[3] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Third Edition, Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-04048-1. |
[4] |
C. L. Fefferman, D. S. McCormick, J. C. Robinson and J. L. Rodrigo, Higher order commutator estimates and local existence for the non-resistive MHD equations and related models, Journal of Functional Analysis, 267 (2014), 1035-1056.
doi: 10.1016/j.jfa.2014.03.021. |
[5] |
B. P. W. Fernando, S. S. Sritharan and M. Xu, A simple proof of global solvability of 2-D Navier-Stokes equations in unbounded domains, Differential and Integral Equations, 23 (2010), 223-235. |
[6] |
J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Volume 1, Springer-Verlag, New York-Heidelberg, 1972.
doi: 10.1007/978-3-642-65161-8. |
[7] |
T. Kato, Quasilinear equations of evolution, with applications to partial differential equations, in Spectral Theory and Differential Equations, Lecture Notes in Mathematics, 448 (1975), 25-70.
doi: 10.1007/BFb0067080. |
[8] |
T. Kato, The Cauchy problem for quasilinear symmetric hyperbolic systems, Archive for Rational Mechanics and Analysis, 58 (1975), 181-205.
doi: 10.1007/BF00280740. |
[9] |
T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Communications in Pure and Applied Mathematics, 41 (1988), 891-907.
doi: 10.1002/cpa.3160410704. |
[10] |
P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, CBMS-NSF Regional Conference Series in Applied Mathematics, No. 11, SIAM, Philadelphia, 1973.
doi: 10.1137/1.9781611970562. |
[11] |
P. D. Lax, Hyperbolic Partial Differential Equations, Lecture Notes, 14, Courant Institute of Mathematical Science, American Mathematical Society, Providence, Rhode Island, 2006. |
[12] |
A. J. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, Vol. 53, Springer-Verlag, New York, 1984.
doi: 10.1007/978-1-4612-1116-7. |
[13] |
A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Text Appl. Math., No. 27, Cambridge University Press, Cambridge, 2002. |
[14] |
J. L. Menaldi and S. S. Sritharan, Stochastic 2-D Navier-Stokes equation, Applied Mathematics and Optimization, 46 (2002), 31-53.
doi: 10.1007/s00245-002-0734-6. |
[15] |
U. Manna, M. T. Mohan and S. S. Sritharan, Stochastic non-resistive magnetohydrodynamic system with Lévy noise,, Submitted for Journal Publication., ().
|
[16] |
M. T. Mohan and S. S. Sritharan, Stochastic Euler equations of fluid dynamics with Lévy noise,, Submitted for Journal Publication., ().
|
[17] |
S. S. Sritharan, An optimal control problem in exterior hydrodynamics, Proceedings of the Royal Society of Edinburgh, 121 (1992), 5-32.
doi: 10.1017/S0308210500014128. |
[18] |
S. S. Sritharan, An introduction to deterministic and stochastic control of viscous flow, in Optimal Control of Viscous Flow (ed. S. S. Sritharan), SIAM, Philadelphia, (1998), 1-42.
doi: 10.1137/1.9781611971415. |
[19] |
S. S. Sritharan and P. Sundar, Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise, Stochastic Processes and their Applications, 116 (2006), 1636-1659.
doi: 10.1016/j.spa.2006.04.001. |
[20] |
M. E. Taylor, Pseudodifferential Operators and Nonlinear PDE, Springer Science & Business Media LLC, Birkhäuser, Boston, 1991.
doi: 10.1007/978-1-4612-0431-2. |
[21] |
M. E. Taylor, Partial Differential Equations III, Nonlinear Equations, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4419-7049-7. |
[22] |
M. E. Taylor, Tools for PDE, Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Mathematical Surveys and Monographs, Vol. 81, American Mathematical Society, 2000. |
[1] |
Eduardo Casas, Konstantinos Chrysafinos. Analysis and optimal control of some quasilinear parabolic equations. Mathematical Control and Related Fields, 2018, 8 (3&4) : 607-623. doi: 10.3934/mcrf.2018025 |
[2] |
Volodymyr O. Kapustyan, Ivan O. Pyshnograiev, Olena A. Kapustian. Quasi-optimal control with a general quadratic criterion in a special norm for systems described by parabolic-hyperbolic equations with non-local boundary conditions. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1243-1258. doi: 10.3934/dcdsb.2019014 |
[3] |
Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473 |
[4] |
Lucas Bonifacius, Ira Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic equations. Mathematical Control and Related Fields, 2018, 8 (1) : 1-34. doi: 10.3934/mcrf.2018001 |
[5] |
Serge Nicaise, Fredi Tröltzsch. Optimal control of some quasilinear Maxwell equations of parabolic type. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1375-1391. doi: 10.3934/dcdss.2017073 |
[6] |
Thierry Daudé, Damien Gobin, François Nicoleau. Local inverse scattering at fixed energy in spherically symmetric asymptotically hyperbolic manifolds. Inverse Problems and Imaging, 2016, 10 (3) : 659-688. doi: 10.3934/ipi.2016016 |
[7] |
Kim Dang Phung. Carleman commutator approach in logarithmic convexity for parabolic equations. Mathematical Control and Related Fields, 2018, 8 (3&4) : 899-933. doi: 10.3934/mcrf.2018040 |
[8] |
Luca Di Persio, Giacomo Ziglio. Gaussian estimates on networks with applications to optimal control. Networks and Heterogeneous Media, 2011, 6 (2) : 279-296. doi: 10.3934/nhm.2011.6.279 |
[9] |
Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control and Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61 |
[10] |
Jie Yang, Sen Ming, Wei Han, Xiongmei Fan. Lifespan estimates of solutions to quasilinear wave equations with damping and negative mass term. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022022 |
[11] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control and Related Fields, 2021, 11 (3) : 521-554. doi: 10.3934/mcrf.2020052 |
[12] |
Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations and Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061 |
[13] |
Hongjie Dong, Doyoon Kim. Schauder estimates for a class of non-local elliptic equations. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2319-2347. doi: 10.3934/dcds.2013.33.2319 |
[14] |
Emmanuele DiBenedetto, Ugo Gianazza and Vincenzo Vespri. Intrinsic Harnack estimates for nonnegative local solutions of degenerate parabolic equations. Electronic Research Announcements, 2006, 12: 95-99. |
[15] |
Luisa Faella, Carmen Perugia. Optimal control for a hyperbolic problem in composites with imperfect interface: A memory effect. Evolution Equations and Control Theory, 2017, 6 (2) : 187-217. doi: 10.3934/eect.2017011 |
[16] |
Hee-Dae Kwon, Jeehyun Lee, Sung-Dae Yang. Eigenseries solutions to optimal control problem and controllability problems on hyperbolic PDEs. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 305-325. doi: 10.3934/dcdsb.2010.13.305 |
[17] |
Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations and Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195 |
[18] |
Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1925-1932. doi: 10.3934/cpaa.2009.8.1925 |
[19] |
Luca Capogna. Optimal regularity for quasilinear equations in stratified nilpotent Lie groups and applications. Electronic Research Announcements, 1996, 2: 60-68. |
[20] |
Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1591-1610. doi: 10.3934/dcdsb.2021102 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]