June  2016, 5(2): 303-335. doi: 10.3934/eect.2016006

Continuous maximal regularity on singular manifolds and its applications

1. 

Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907, United States

Received  December 2015 Revised  March 2016 Published  June 2016

In this article, we set up the continuous maximal regularity theory for a class of linear differential operators on manifolds with singularities. These operators exhibit degenerate or singular behaviors while approaching the singular ends. Particular examples of such operators include differential operators defined on domains, which degenerate fast enough toward the boundary. Applications of the theory established herein are shown to the Yamabe flow, the porous medium equation, the parabolic $p$-Laplacian equation and the thin film equation. Some comments about the boundary blow-up problem, and waiting time phenomenon for singular or degenerate parabolic equations can also be found in this paper.
Citation: Yuanzhen Shao. Continuous maximal regularity on singular manifolds and its applications. Evolution Equations & Control Theory, 2016, 5 (2) : 303-335. doi: 10.3934/eect.2016006
References:
[1]

H. Amann, Linear and Quasilinear Parabolic Problems: Volume I.,, Abstract linear theory. Monographs in Mathematics, (1995).  doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[2]

H. Amann, Elliptic operators with infinite-dimensional state spaces,, J. Evol. Equ., 1 (2001), 143.  doi: 10.1007/PL00001367.  Google Scholar

[3]

H. Amann, Function spaces on singular manifolds,, Math. Nachr., 286 (2013), 436.  doi: 10.1002/mana.201100157.  Google Scholar

[4]

H. Amann, Anisotropic function spaces on singular manifolds,, , ().  doi: 10.1002/mana.201100157.  Google Scholar

[5]

H. Amann, Parabolic equations on uniformly regular Riemannian manifolds and degenerate initial boundary value problems,, Recent Developments of Mathematical Fluid Mechanics, (2016).  doi: 10.1007/978-3-0348-0939-9_4.  Google Scholar

[6]

H. Amann, Uniformly Regular and Singular Riemannian Manifolds,, Elliptic and parabolic equations, 119 (2015), 1.  doi: 10.1007/978-3-319-12547-3_1.  Google Scholar

[7]

H. Amann, Cauchy Problems for Parabolic Equations in Sobolev-Slobodeckii and Hölder Spaces on Uniformly Regular Riemannian Manifolds,, , ().   Google Scholar

[8]

S. B. Angenent, Nonlinear analytic semiflows,, Proc. Roy. Soc. Edinburgh Sect. A, 115 (1990), 91.  doi: 10.1017/S0308210500024598.  Google Scholar

[9]

E. Bahuaud and B. Vertman, Yamabe flow on manifolds with edges,, Math. Nachr., 287 (2014), 127.  doi: 10.1002/mana.201200210.  Google Scholar

[10]

F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations,, J. Differential Equations, 83 (1990), 179.  doi: 10.1016/0022-0396(90)90074-Y.  Google Scholar

[11]

M. Boutat, S. Hilout, J.-E. Rakotoson and J.-M. Rakotoson, A generalized thin-film equation in multidimensional space,, Nonlinear Anal., 69 (2008), 1268.  doi: 10.1016/j.na.2007.06.028.  Google Scholar

[12]

F. E. Browder, Analyticity and partial differential equations I,, Amer. J. Math., 84 (1962), 666.  doi: 10.2307/2372872.  Google Scholar

[13]

D. Chang, N. Habal and B.-W. Schulze, Quantisation on a manifold with singular edge,, J. Pseudo-Differ. Oper. Appl., 4 (2013), 317.  doi: 10.1007/s11868-013-0077-x.  Google Scholar

[14]

J. Chang and J. Lee, Harnack-type inequalities for the porous medium equation on a manifold with non-negative Ricci curvature,, Internat. J. Math., 23 (2012).  doi: 10.1142/S0129167X11007525.  Google Scholar

[15]

P. Clément and G. Simonett, Maximal regularity in continuous interpolation spaces and quasilinear parabolic equations,, J. Evol. Equ., 1 (2001), 39.  doi: 10.1007/PL00001364.  Google Scholar

[16]

R. Dal Passo, L. Giacomelli and G. Grün, A waiting time phenomenon for thin film equations,, Ann. Scuola Norm. Sup. Pisa, 30 (2001), 437.   Google Scholar

[17]

G. Da Prato and P. Grisvard, Equations d'évolution abstraites non linéaires de type parabolique,, Ann. Mat. Pura Appl., 120 (1979), 329.  doi: 10.1007/BF02411952.  Google Scholar

[18]

P. Daskalopoulos and R. Hamilton, Regularity of the free boundary for the porous medium equation,, J. Amer. Math. Soc., 11 (1998), 899.  doi: 10.1090/S0894-0347-98-00277-X.  Google Scholar

[19]

S. A. J. Dekkers, A comparison theorem for solutions of degenerate parabolic equations on manifolds,, Proc. Roy. Soc. Edinburgh Sect., 138 (2008), 755.  doi: 10.1017/S0308210505000880.  Google Scholar

[20]

J. I. Diáz, T. Nagai and S. I. Shmarëv, On the interfaces in a nonlocal quasilinear degenerate equation arising in population dynamics,, Japan J. Indust. Appl. Math., 13 (1996), 385.  doi: 10.1007/BF03167255.  Google Scholar

[21]

E. Di Benedetto, Degenerate Parabolic Equations,, Universitext. Springer-Verlag, (1993).  doi: 10.1007/978-1-4612-0895-2.  Google Scholar

[22]

E. DiBenedetto, U. Gianazza and V. Vespri, Harnack's Inequality for Degenerate and Singular Parabolic Equations,, Springer Monographs in Mathematics. Springer, (2012).  doi: 10.1007/978-1-4614-1584-8.  Google Scholar

[23]

M. Disconzi, Y. Shao and G. Simonett, Some remarks on uniformly regular Riemannian manifolds,, Math. Nachr., 289 (2016), 232.  doi: 10.1002/mana.201400354.  Google Scholar

[24]

S. Fornaro, G. Metafune and D. Pallara, Analytic semigroups generated in Lp by elliptic operators with high order degeneracy at the boundary,, Note Mat., 31 (2011), 103.   Google Scholar

[25]

L. Giacomelli and G. Grün, Lower bounds on waiting times for degenerate parabolic equations and systems,, Interfaces Free Bound., 8 (2006), 111.  doi: 10.4171/IFB/137.  Google Scholar

[26]

G. Grün, Droplet spreading under weak slippage: the waiting time phenomenon,, Ann. Inst. H. Poincaré Anal., 21 (2004), 255.  doi: 10.1016/j.anihpc.2003.02.002.  Google Scholar

[27]

J. R. King, Two generalisations of the thin film equation,, Math. Comput. Modelling, 34 (2001), 737.  doi: 10.1016/S0895-7177(01)00095-4.  Google Scholar

[28]

A. Kiselev, R. Shterenberg and A. Zlatoš, Relaxation enhancement by time-periodic flows,, Indiana Univ. Math. J., 57 (2008), 2137.  doi: 10.1512/iumj.2008.57.3349.  Google Scholar

[29]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems,, Birkhäuser Verlag, (1995).  doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[30]

L. Ma, L. Cheng and A. Zhu, Extending Yamabe flow on complete Riemannian manifolds,, Bull. Sci. Math., 136 (2012), 882.  doi: 10.1016/j.bulsci.2012.06.004.  Google Scholar

[31]

R. B. Melrose, Transformation of boundary problems,, Acta Math., 147 (1981), 149.  doi: 10.1007/BF02392873.  Google Scholar

[32]

R. B. Melrose, The Atiyah-Patodi-Singer Index Theorem,, Research Notes in Mathematics, (1993).   Google Scholar

[33]

F. Otto and M. Westdickenberg Michael, Eulerian calculus for the contraction in the Wasserstein distance,, SIAM J. Math. Anal., 37 (2005), 1227.  doi: 10.1137/050622420.  Google Scholar

[34]

J. Prüss and G. Simonett, On the manifold of closed hypersurfaces in $\mathbbR^n$,, Discrete Contin. Dyn. Syst., 33 (2013), 5407.  doi: 10.3934/dcds.2013.33.5407.  Google Scholar

[35]

N. Roidos and E. Schrohe, Existence and maximal $L^p$-regularity of solutions for the porous medium equation on manifolds with conical singularities,, , ().   Google Scholar

[36]

B.-W. Schulze, Pseudo-differential Boundary Value Problems, Conical Singularities, and Asymptotics,, Mathematical Topics, (1994).   Google Scholar

[37]

B.-W. Schulze, Boundary Value Problems and Edge Pseudo-Differential Operators,, Microlocal analysis and spectral theory (Lucca, (1996), 165.   Google Scholar

[38]

Y. Shao, A family of parameter-dependent diffeomorphisms acting on function spaces over a Riemannian manifold and applications to geometric flows,, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 45.  doi: 10.1007/s00030-014-0275-0.  Google Scholar

[39]

Y. Shao, Singular parabolic equations of second order on manifolds with singularities,, J. Differential Equations, 260 (2016), 1747.  doi: 10.1016/j.jde.2015.09.053.  Google Scholar

[40]

Y. Shao, The Yamabe flow on incomplete manifolds,, Submitted. , ().   Google Scholar

[41]

Y. Shao and G. Simonett, Continuous maximal regularity on uniformly regular Riemannian manifolds,, J. Evol. Equ., 1 (2014), 211.  doi: 10.1007/s00028-014-0218-6.  Google Scholar

[42]

A. E. Shishkov, Waiting time of propagation and the backward motion of interfaces in thin-film flow theory,, Discrete Contin. Dyn. Syst., (2007), 938.   Google Scholar

[43]

H. Triebel, Theory of Function Spaces I,, Birkhäuser Verlag, (1983).  doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[44]

J. L. Vázquez, An Introduction to the Mathematical Theory of the Porous Medium Equation,, Shape optimization and free boundaries (Montreal, (1990), 347.   Google Scholar

[45]

J. L. Vázquez, The Porous Medium Equation. Mathematical Theory,, Oxford Mathematical Monographs. The Clarendon Press, (2007).   Google Scholar

[46]

V. Vespri, Analytic semigroups, degenerate elliptic operators and applications to nonlinear Cauchy problems,, Ann. Mat. Pura Appl., 155 (1989), 353.  doi: 10.1007/BF01765950.  Google Scholar

[47]

X. Xu, Gradient estimates for $u_t=\Delta F(u)$ on manifolds and some Liouville-type theorems,, J. Differential Equations, 252 (2012), 1403.  doi: 10.1016/j.jde.2011.08.004.  Google Scholar

[48]

X. Zhu, Hamilton's gradient estimates and Liouville theorems for porous medium equations on noncompact Riemannian manifolds,, J. Math. Anal. Appl., 402 (2013), 201.  doi: 10.1016/j.jmaa.2013.01.018.  Google Scholar

show all references

References:
[1]

H. Amann, Linear and Quasilinear Parabolic Problems: Volume I.,, Abstract linear theory. Monographs in Mathematics, (1995).  doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[2]

H. Amann, Elliptic operators with infinite-dimensional state spaces,, J. Evol. Equ., 1 (2001), 143.  doi: 10.1007/PL00001367.  Google Scholar

[3]

H. Amann, Function spaces on singular manifolds,, Math. Nachr., 286 (2013), 436.  doi: 10.1002/mana.201100157.  Google Scholar

[4]

H. Amann, Anisotropic function spaces on singular manifolds,, , ().  doi: 10.1002/mana.201100157.  Google Scholar

[5]

H. Amann, Parabolic equations on uniformly regular Riemannian manifolds and degenerate initial boundary value problems,, Recent Developments of Mathematical Fluid Mechanics, (2016).  doi: 10.1007/978-3-0348-0939-9_4.  Google Scholar

[6]

H. Amann, Uniformly Regular and Singular Riemannian Manifolds,, Elliptic and parabolic equations, 119 (2015), 1.  doi: 10.1007/978-3-319-12547-3_1.  Google Scholar

[7]

H. Amann, Cauchy Problems for Parabolic Equations in Sobolev-Slobodeckii and Hölder Spaces on Uniformly Regular Riemannian Manifolds,, , ().   Google Scholar

[8]

S. B. Angenent, Nonlinear analytic semiflows,, Proc. Roy. Soc. Edinburgh Sect. A, 115 (1990), 91.  doi: 10.1017/S0308210500024598.  Google Scholar

[9]

E. Bahuaud and B. Vertman, Yamabe flow on manifolds with edges,, Math. Nachr., 287 (2014), 127.  doi: 10.1002/mana.201200210.  Google Scholar

[10]

F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations,, J. Differential Equations, 83 (1990), 179.  doi: 10.1016/0022-0396(90)90074-Y.  Google Scholar

[11]

M. Boutat, S. Hilout, J.-E. Rakotoson and J.-M. Rakotoson, A generalized thin-film equation in multidimensional space,, Nonlinear Anal., 69 (2008), 1268.  doi: 10.1016/j.na.2007.06.028.  Google Scholar

[12]

F. E. Browder, Analyticity and partial differential equations I,, Amer. J. Math., 84 (1962), 666.  doi: 10.2307/2372872.  Google Scholar

[13]

D. Chang, N. Habal and B.-W. Schulze, Quantisation on a manifold with singular edge,, J. Pseudo-Differ. Oper. Appl., 4 (2013), 317.  doi: 10.1007/s11868-013-0077-x.  Google Scholar

[14]

J. Chang and J. Lee, Harnack-type inequalities for the porous medium equation on a manifold with non-negative Ricci curvature,, Internat. J. Math., 23 (2012).  doi: 10.1142/S0129167X11007525.  Google Scholar

[15]

P. Clément and G. Simonett, Maximal regularity in continuous interpolation spaces and quasilinear parabolic equations,, J. Evol. Equ., 1 (2001), 39.  doi: 10.1007/PL00001364.  Google Scholar

[16]

R. Dal Passo, L. Giacomelli and G. Grün, A waiting time phenomenon for thin film equations,, Ann. Scuola Norm. Sup. Pisa, 30 (2001), 437.   Google Scholar

[17]

G. Da Prato and P. Grisvard, Equations d'évolution abstraites non linéaires de type parabolique,, Ann. Mat. Pura Appl., 120 (1979), 329.  doi: 10.1007/BF02411952.  Google Scholar

[18]

P. Daskalopoulos and R. Hamilton, Regularity of the free boundary for the porous medium equation,, J. Amer. Math. Soc., 11 (1998), 899.  doi: 10.1090/S0894-0347-98-00277-X.  Google Scholar

[19]

S. A. J. Dekkers, A comparison theorem for solutions of degenerate parabolic equations on manifolds,, Proc. Roy. Soc. Edinburgh Sect., 138 (2008), 755.  doi: 10.1017/S0308210505000880.  Google Scholar

[20]

J. I. Diáz, T. Nagai and S. I. Shmarëv, On the interfaces in a nonlocal quasilinear degenerate equation arising in population dynamics,, Japan J. Indust. Appl. Math., 13 (1996), 385.  doi: 10.1007/BF03167255.  Google Scholar

[21]

E. Di Benedetto, Degenerate Parabolic Equations,, Universitext. Springer-Verlag, (1993).  doi: 10.1007/978-1-4612-0895-2.  Google Scholar

[22]

E. DiBenedetto, U. Gianazza and V. Vespri, Harnack's Inequality for Degenerate and Singular Parabolic Equations,, Springer Monographs in Mathematics. Springer, (2012).  doi: 10.1007/978-1-4614-1584-8.  Google Scholar

[23]

M. Disconzi, Y. Shao and G. Simonett, Some remarks on uniformly regular Riemannian manifolds,, Math. Nachr., 289 (2016), 232.  doi: 10.1002/mana.201400354.  Google Scholar

[24]

S. Fornaro, G. Metafune and D. Pallara, Analytic semigroups generated in Lp by elliptic operators with high order degeneracy at the boundary,, Note Mat., 31 (2011), 103.   Google Scholar

[25]

L. Giacomelli and G. Grün, Lower bounds on waiting times for degenerate parabolic equations and systems,, Interfaces Free Bound., 8 (2006), 111.  doi: 10.4171/IFB/137.  Google Scholar

[26]

G. Grün, Droplet spreading under weak slippage: the waiting time phenomenon,, Ann. Inst. H. Poincaré Anal., 21 (2004), 255.  doi: 10.1016/j.anihpc.2003.02.002.  Google Scholar

[27]

J. R. King, Two generalisations of the thin film equation,, Math. Comput. Modelling, 34 (2001), 737.  doi: 10.1016/S0895-7177(01)00095-4.  Google Scholar

[28]

A. Kiselev, R. Shterenberg and A. Zlatoš, Relaxation enhancement by time-periodic flows,, Indiana Univ. Math. J., 57 (2008), 2137.  doi: 10.1512/iumj.2008.57.3349.  Google Scholar

[29]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems,, Birkhäuser Verlag, (1995).  doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[30]

L. Ma, L. Cheng and A. Zhu, Extending Yamabe flow on complete Riemannian manifolds,, Bull. Sci. Math., 136 (2012), 882.  doi: 10.1016/j.bulsci.2012.06.004.  Google Scholar

[31]

R. B. Melrose, Transformation of boundary problems,, Acta Math., 147 (1981), 149.  doi: 10.1007/BF02392873.  Google Scholar

[32]

R. B. Melrose, The Atiyah-Patodi-Singer Index Theorem,, Research Notes in Mathematics, (1993).   Google Scholar

[33]

F. Otto and M. Westdickenberg Michael, Eulerian calculus for the contraction in the Wasserstein distance,, SIAM J. Math. Anal., 37 (2005), 1227.  doi: 10.1137/050622420.  Google Scholar

[34]

J. Prüss and G. Simonett, On the manifold of closed hypersurfaces in $\mathbbR^n$,, Discrete Contin. Dyn. Syst., 33 (2013), 5407.  doi: 10.3934/dcds.2013.33.5407.  Google Scholar

[35]

N. Roidos and E. Schrohe, Existence and maximal $L^p$-regularity of solutions for the porous medium equation on manifolds with conical singularities,, , ().   Google Scholar

[36]

B.-W. Schulze, Pseudo-differential Boundary Value Problems, Conical Singularities, and Asymptotics,, Mathematical Topics, (1994).   Google Scholar

[37]

B.-W. Schulze, Boundary Value Problems and Edge Pseudo-Differential Operators,, Microlocal analysis and spectral theory (Lucca, (1996), 165.   Google Scholar

[38]

Y. Shao, A family of parameter-dependent diffeomorphisms acting on function spaces over a Riemannian manifold and applications to geometric flows,, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 45.  doi: 10.1007/s00030-014-0275-0.  Google Scholar

[39]

Y. Shao, Singular parabolic equations of second order on manifolds with singularities,, J. Differential Equations, 260 (2016), 1747.  doi: 10.1016/j.jde.2015.09.053.  Google Scholar

[40]

Y. Shao, The Yamabe flow on incomplete manifolds,, Submitted. , ().   Google Scholar

[41]

Y. Shao and G. Simonett, Continuous maximal regularity on uniformly regular Riemannian manifolds,, J. Evol. Equ., 1 (2014), 211.  doi: 10.1007/s00028-014-0218-6.  Google Scholar

[42]

A. E. Shishkov, Waiting time of propagation and the backward motion of interfaces in thin-film flow theory,, Discrete Contin. Dyn. Syst., (2007), 938.   Google Scholar

[43]

H. Triebel, Theory of Function Spaces I,, Birkhäuser Verlag, (1983).  doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[44]

J. L. Vázquez, An Introduction to the Mathematical Theory of the Porous Medium Equation,, Shape optimization and free boundaries (Montreal, (1990), 347.   Google Scholar

[45]

J. L. Vázquez, The Porous Medium Equation. Mathematical Theory,, Oxford Mathematical Monographs. The Clarendon Press, (2007).   Google Scholar

[46]

V. Vespri, Analytic semigroups, degenerate elliptic operators and applications to nonlinear Cauchy problems,, Ann. Mat. Pura Appl., 155 (1989), 353.  doi: 10.1007/BF01765950.  Google Scholar

[47]

X. Xu, Gradient estimates for $u_t=\Delta F(u)$ on manifolds and some Liouville-type theorems,, J. Differential Equations, 252 (2012), 1403.  doi: 10.1016/j.jde.2011.08.004.  Google Scholar

[48]

X. Zhu, Hamilton's gradient estimates and Liouville theorems for porous medium equations on noncompact Riemannian manifolds,, J. Math. Anal. Appl., 402 (2013), 201.  doi: 10.1016/j.jmaa.2013.01.018.  Google Scholar

[1]

Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058

[2]

Lili Du, Zheng-An Yao. Localization of blow-up points for a nonlinear nonlocal porous medium equation. Communications on Pure & Applied Analysis, 2007, 6 (1) : 183-190. doi: 10.3934/cpaa.2007.6.183

[3]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[4]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

[5]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[6]

Jeremy LeCrone, Gieri Simonett. On quasilinear parabolic equations and continuous maximal regularity. Evolution Equations & Control Theory, 2020, 9 (1) : 61-86. doi: 10.3934/eect.2020017

[7]

Pelin G. Geredeli, Azer Khanmamedov. Long-time dynamics of the parabolic $p$-Laplacian equation. Communications on Pure & Applied Analysis, 2013, 12 (2) : 735-754. doi: 10.3934/cpaa.2013.12.735

[8]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[9]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[10]

Peter Weidemaier. Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm. Electronic Research Announcements, 2002, 8: 47-51.

[11]

Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

[12]

Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225

[13]

Yoshikazu Giga. Interior derivative blow-up for quasilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 449-461. doi: 10.3934/dcds.1995.1.449

[14]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[15]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

[16]

Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147

[17]

Joachim von Below, Gaëlle Pincet Mailly, Jean-François Rault. Growth order and blow up points for the parabolic Burgers' equation under dynamical boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 825-836. doi: 10.3934/dcdss.2013.6.825

[18]

Goro Akagi, Kazumasa Suzuki. On a certain degenerate parabolic equation associated with the infinity-laplacian. Conference Publications, 2007, 2007 (Special) : 18-27. doi: 10.3934/proc.2007.2007.18

[19]

Sergey Degtyarev. Classical solvability of the multidimensional free boundary problem for the thin film equation with quadratic mobility in the case of partial wetting. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3625-3699. doi: 10.3934/dcds.2017156

[20]

Goro Akagi, Kei Matsuura. Well-posedness and large-time behaviors of solutions for a parabolic equation involving $p(x)$-Laplacian. Conference Publications, 2011, 2011 (Special) : 22-31. doi: 10.3934/proc.2011.2011.22

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]