June  2016, 5(2): 337-348. doi: 10.3934/eect.2016007

A remark on blow up criterion of three-dimensional nematic liquid crystal flows

1. 

School of Mathematics and Information Sciences, North China University of Water Resources and Electric Power, Zhengzhou 450011, China

Received  January 2016 Revised  March 2016 Published  June 2016

In this paper, we study the initial value problem for the three-dimensional nematic liquid crystal flows. Blow up criterion of smooth solutions is established by the energy method, which refines the previous result.
Citation: Yinxia Wang. A remark on blow up criterion of three-dimensional nematic liquid crystal flows. Evolution Equations & Control Theory, 2016, 5 (2) : 337-348. doi: 10.3934/eect.2016007
References:
[1]

G. Brown and W. Shaw, The Mesomorphic State, Liquid Crystals,, Chem. Rev., 57 (1957), 1049.  doi: 10.1021/cr50018a002.  Google Scholar

[2]

Q. Chen, Z. Tan and G. Wu, LPS's criterion for incompressible nematics liquid crystal flows,, Acta Mathematica Scientia, 34 (2014), 1072.  doi: 10.1016/S0252-9602(14)60070-9.  Google Scholar

[3]

J. Chemin, perfect Incompressible Fluids,, Oxford Lecture Ser. Math. Appl. 14, 14 (1998).   Google Scholar

[4]

J. Ericksen, Hydrostatic theory of liquid crystal,, Arch. Rational Mech. Anal., 9 (1962), 371.  doi: 10.1007/BF00253358.  Google Scholar

[5]

J. Ericksen and D. Kinderlehrer (eds.), Theory and Applications of Liquid Crystals,, The IMA Volumes in Mathematics and its Applications, 5 (1987), 21.  doi: 10.1007/978-1-4613-8743-5.  Google Scholar

[6]

J. Ericksen, Equilibrium theory of liquid crystals,, Advances in Liquid Crystals, 2 (1976), 233.  doi: 10.1016/B978-0-12-025002-8.50012-9.  Google Scholar

[7]

F. Frank, On the theory of liquid crystals,, Discussions Faraday Soc., 25 (1958), 19.   Google Scholar

[8]

P. G. de Gennes, The Physics of Liquid Crystals,, Oxford, (1974).   Google Scholar

[9]

Y. Hao and X. Liu, The existence and blow-up criterion of liquid crystals system in critical Besov space,, Commun. Pure Appl. Anal., 13 (2014), 225.   Google Scholar

[10]

R. Hardt, D. Kinderlehrer and F. Lin, Existence and partial regularity of static liquid crystal configurations,, Comm. Math. Phys., 105 (1986), 547.  doi: 10.1007/BF01238933.  Google Scholar

[11]

M. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in $\mathbbR^2$,, Cal. Var. Part. Differ. Equ., 40 (2011), 15.  doi: 10.1007/s00526-010-0331-5.  Google Scholar

[12]

T. Huang and C. Wang, Blow up criterion for nematic liquid crystal flows,, Comm. Part. Differ.Equ., 37 (2012), 875.  doi: 10.1080/03605302.2012.659366.  Google Scholar

[13]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 891.  doi: 10.1002/cpa.3160410704.  Google Scholar

[14]

H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations,, Math. Z., 242 (2002), 251.  doi: 10.1007/s002090100332.  Google Scholar

[15]

F. Leslie, Some constitutive equations for liquid crystals,, Arch. Rational Mech. Anal., 28 (1968), 265.  doi: 10.1007/BF00251810.  Google Scholar

[16]

F. Leslie, Theory of flow phenomemum in liquid crystal,, In: Brown (ed.) Advances in Liquid Crystals, 4 (1979), 1.   Google Scholar

[17]

F. Lin, Nonlinear theory of defects in nematic liquid crystal: Phase transition and flow phenomena,, Comm. Pure Appl. Math., 42 (1989), 789.  doi: 10.1002/cpa.3160420605.  Google Scholar

[18]

F. Lin and C. Liu, Nonparabolic Dissipative Systems Modeling the Flow of Liquid Crystals,, Comm. Pure Appl. Math., 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[19]

F. Lin, J. Lin and C. Wang, Liquid crystal flows in two dimensions,, Arch. Rational Mech. Anal., 197 (2010), 297.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[20]

F. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals,, Chin. Ann. Math. Ser. B, 31 (2010), 921.  doi: 10.1007/s11401-010-0612-5.  Google Scholar

[21]

A. Majda and A. Bertozzi, Vorticity and Incompressible Flow,, Cambridge University Press: Cambridge, (2002).   Google Scholar

[22]

C. Oseen, Die anisotropen Fliissigkeiten, Tatsachen und Theorien,, Forts. Chemie, 21 (1929), 25.   Google Scholar

[23]

H. Triebel, Theory of Function Spaces,, Monograph in Mathematics, 78 (1983).  doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[24]

Y. Wang and Y. Wang, Blow up criterion for three-dimensional nematic liquid crystal flows with partial viscosity,, Math. Meth. Appl. Sci. 36 (2013), 36 (2013), 60.  doi: 10.1002/mma.2569.  Google Scholar

[25]

Y. Wang, A logarithmically improved blow up criterion for three-dimensional nematic liquid crystal flows with partial viscosity,, Scienceasia, 39 (2013), 73.   Google Scholar

[26]

Y. X. Wang, Blow-up criteria of smooth solutions to the three-dimensional magneto-micropolar fluid equations,, Boundary Value Problems, 2015 (2015).  doi: 10.1186/s13661-015-0382-9.  Google Scholar

[27]

H. Wen and S. Ding, Solutions of incompressible hydrodynamic flow of liquid crystals,, Nonlinear Analysis: Real World Appl., 12 (2011), 1510.  doi: 10.1016/j.nonrwa.2010.10.010.  Google Scholar

[28]

Y. Zhang, Z. Tan and G. Wu, Blow up criterion for incompressible nematics liquid crystal flows,, preprint, ().   Google Scholar

[29]

Z. Zhang, S. Liu, J. Pan and L. Ma, A refined blow up criterion for the nematics liquid crystals,, Int. J. Contemp. Math. Sciences, 9 (2014), 441.  doi: 10.12988/ijcms.2014.4438.  Google Scholar

show all references

References:
[1]

G. Brown and W. Shaw, The Mesomorphic State, Liquid Crystals,, Chem. Rev., 57 (1957), 1049.  doi: 10.1021/cr50018a002.  Google Scholar

[2]

Q. Chen, Z. Tan and G. Wu, LPS's criterion for incompressible nematics liquid crystal flows,, Acta Mathematica Scientia, 34 (2014), 1072.  doi: 10.1016/S0252-9602(14)60070-9.  Google Scholar

[3]

J. Chemin, perfect Incompressible Fluids,, Oxford Lecture Ser. Math. Appl. 14, 14 (1998).   Google Scholar

[4]

J. Ericksen, Hydrostatic theory of liquid crystal,, Arch. Rational Mech. Anal., 9 (1962), 371.  doi: 10.1007/BF00253358.  Google Scholar

[5]

J. Ericksen and D. Kinderlehrer (eds.), Theory and Applications of Liquid Crystals,, The IMA Volumes in Mathematics and its Applications, 5 (1987), 21.  doi: 10.1007/978-1-4613-8743-5.  Google Scholar

[6]

J. Ericksen, Equilibrium theory of liquid crystals,, Advances in Liquid Crystals, 2 (1976), 233.  doi: 10.1016/B978-0-12-025002-8.50012-9.  Google Scholar

[7]

F. Frank, On the theory of liquid crystals,, Discussions Faraday Soc., 25 (1958), 19.   Google Scholar

[8]

P. G. de Gennes, The Physics of Liquid Crystals,, Oxford, (1974).   Google Scholar

[9]

Y. Hao and X. Liu, The existence and blow-up criterion of liquid crystals system in critical Besov space,, Commun. Pure Appl. Anal., 13 (2014), 225.   Google Scholar

[10]

R. Hardt, D. Kinderlehrer and F. Lin, Existence and partial regularity of static liquid crystal configurations,, Comm. Math. Phys., 105 (1986), 547.  doi: 10.1007/BF01238933.  Google Scholar

[11]

M. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in $\mathbbR^2$,, Cal. Var. Part. Differ. Equ., 40 (2011), 15.  doi: 10.1007/s00526-010-0331-5.  Google Scholar

[12]

T. Huang and C. Wang, Blow up criterion for nematic liquid crystal flows,, Comm. Part. Differ.Equ., 37 (2012), 875.  doi: 10.1080/03605302.2012.659366.  Google Scholar

[13]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 891.  doi: 10.1002/cpa.3160410704.  Google Scholar

[14]

H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations,, Math. Z., 242 (2002), 251.  doi: 10.1007/s002090100332.  Google Scholar

[15]

F. Leslie, Some constitutive equations for liquid crystals,, Arch. Rational Mech. Anal., 28 (1968), 265.  doi: 10.1007/BF00251810.  Google Scholar

[16]

F. Leslie, Theory of flow phenomemum in liquid crystal,, In: Brown (ed.) Advances in Liquid Crystals, 4 (1979), 1.   Google Scholar

[17]

F. Lin, Nonlinear theory of defects in nematic liquid crystal: Phase transition and flow phenomena,, Comm. Pure Appl. Math., 42 (1989), 789.  doi: 10.1002/cpa.3160420605.  Google Scholar

[18]

F. Lin and C. Liu, Nonparabolic Dissipative Systems Modeling the Flow of Liquid Crystals,, Comm. Pure Appl. Math., 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[19]

F. Lin, J. Lin and C. Wang, Liquid crystal flows in two dimensions,, Arch. Rational Mech. Anal., 197 (2010), 297.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[20]

F. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals,, Chin. Ann. Math. Ser. B, 31 (2010), 921.  doi: 10.1007/s11401-010-0612-5.  Google Scholar

[21]

A. Majda and A. Bertozzi, Vorticity and Incompressible Flow,, Cambridge University Press: Cambridge, (2002).   Google Scholar

[22]

C. Oseen, Die anisotropen Fliissigkeiten, Tatsachen und Theorien,, Forts. Chemie, 21 (1929), 25.   Google Scholar

[23]

H. Triebel, Theory of Function Spaces,, Monograph in Mathematics, 78 (1983).  doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[24]

Y. Wang and Y. Wang, Blow up criterion for three-dimensional nematic liquid crystal flows with partial viscosity,, Math. Meth. Appl. Sci. 36 (2013), 36 (2013), 60.  doi: 10.1002/mma.2569.  Google Scholar

[25]

Y. Wang, A logarithmically improved blow up criterion for three-dimensional nematic liquid crystal flows with partial viscosity,, Scienceasia, 39 (2013), 73.   Google Scholar

[26]

Y. X. Wang, Blow-up criteria of smooth solutions to the three-dimensional magneto-micropolar fluid equations,, Boundary Value Problems, 2015 (2015).  doi: 10.1186/s13661-015-0382-9.  Google Scholar

[27]

H. Wen and S. Ding, Solutions of incompressible hydrodynamic flow of liquid crystals,, Nonlinear Analysis: Real World Appl., 12 (2011), 1510.  doi: 10.1016/j.nonrwa.2010.10.010.  Google Scholar

[28]

Y. Zhang, Z. Tan and G. Wu, Blow up criterion for incompressible nematics liquid crystal flows,, preprint, ().   Google Scholar

[29]

Z. Zhang, S. Liu, J. Pan and L. Ma, A refined blow up criterion for the nematics liquid crystals,, Int. J. Contemp. Math. Sciences, 9 (2014), 441.  doi: 10.12988/ijcms.2014.4438.  Google Scholar

[1]

Yang Liu, Sining Zheng, Huapeng Li, Shengquan Liu. Strong solutions to Cauchy problem of 2D compressible nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3921-3938. doi: 10.3934/dcds.2017165

[2]

Jihong Zhao, Qiao Liu, Shangbin Cui. Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Communications on Pure & Applied Analysis, 2013, 12 (1) : 341-357. doi: 10.3934/cpaa.2013.12.341

[3]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[4]

Yu-Zhu Wang, Weibing Zuo. On the blow-up criterion of smooth solutions for Hall-magnetohydrodynamics system with partial viscosity. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1327-1336. doi: 10.3934/cpaa.2014.13.1327

[5]

Yan Jia, Xingwei Zhang, Bo-Qing Dong. Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion. Communications on Pure & Applied Analysis, 2013, 12 (2) : 923-937. doi: 10.3934/cpaa.2013.12.923

[6]

Francisco Guillén-González, Mouhamadou Samsidy Goudiaby. Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4229-4246. doi: 10.3934/dcds.2012.32.4229

[7]

Hao Wu. Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 379-396. doi: 10.3934/dcds.2010.26.379

[8]

M. Gregory Forest, Hongyun Wang, Hong Zhou. Sheared nematic liquid crystal polymer monolayers. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 497-517. doi: 10.3934/dcdsb.2009.11.497

[9]

Bagisa Mukherjee, Chun Liu. On the stability of two nematic liquid crystal configurations. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 561-574. doi: 10.3934/dcdsb.2002.2.561

[10]

Shanshan Guo, Zhong Tan. Energy dissipation for weak solutions of incompressible liquid crystal flows. Kinetic & Related Models, 2015, 8 (4) : 691-706. doi: 10.3934/krm.2015.8.691

[11]

Stefano Bosia. Well-posedness and long term behavior of a simplified Ericksen-Leslie non-autonomous system for nematic liquid crystal flows. Communications on Pure & Applied Analysis, 2012, 11 (2) : 407-441. doi: 10.3934/cpaa.2012.11.407

[12]

Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225

[13]

Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007

[14]

Junyu Lin. Uniqueness of harmonic map heat flows and liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 739-755. doi: 10.3934/dcds.2013.33.739

[15]

Boling Guo, Yongqian Han, Guoli Zhou. Random attractor for the 2D stochastic nematic liquid crystals flows. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2349-2376. doi: 10.3934/cpaa.2019106

[16]

Zhenlu Cui, M. Carme Calderer, Qi Wang. Mesoscale structures in flows of weakly sheared cholesteric liquid crystal polymers. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 291-310. doi: 10.3934/dcdsb.2006.6.291

[17]

Chun Liu, Jie Shen. On liquid crystal flows with free-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 307-318. doi: 10.3934/dcds.2001.7.307

[18]

Xiaoli Li, Boling Guo. Well-posedness for the three-dimensional compressible liquid crystal flows. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1913-1937. doi: 10.3934/dcdss.2016078

[19]

Zhenlu Cui, Qi Wang. Permeation flows in cholesteric liquid crystal polymers under oscillatory shear. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 45-60. doi: 10.3934/dcdsb.2011.15.45

[20]

Zhiyuan Geng, Wei Wang, Pingwen Zhang, Zhifei Zhang. Stability of half-degree point defect profiles for 2-D nematic liquid crystal. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6227-6242. doi: 10.3934/dcds.2017269

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]