Citation: |
[1] |
M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, Dover, New York, 1965. |
[2] |
J. Angulo, Nonlinear Dispersive Equations: Existence and Stability of Solitary and Periodic Travelling Wave Solutions, Mathematical Surveys and Monographs, Vol. 156, American Mathematical Society, Providence, RI, 2009.doi: 10.1090/surv/156. |
[3] |
E. Becker, Gas Dynamics, Academic Press, New York, NY, 1968. |
[4] |
R. Becker, Stoßbwelle und detonation (in German), Z. Phys. 8 (1922), 321-362. [English transl.: Impact waves and detonation, Part I, N.A.C.A. Technical Memo. No. 505 (N.A.C.A., Washington, DC, 1929); Part II, N.A.C.A. Technical Memo. No. 506 (N.A.C.A., Washington, DC, 1929)]. |
[5] |
R. T. Beyer, The parameter $B/A$, in: Nonlinear Acoustics (eds. M. F. Hamilton and D. T. Blackstock), Academic Press, San Diego, CA, (1997), 25-39. |
[6] |
D. T. Blackstock, Approximate Equations Governing Finite-Amplitude Sound in Thermoviscous Fluids, Technical Report GD/E Report GD-1463-52, General Dynamics Corp., Rochester, NY, 1963, Chap. IV. |
[7] |
W. Chester, Resonant oscillations in closed tubes, J. Fluid Mech. 18 (1964), 44-64.doi: 10.1017/S0022112064000040. |
[8] |
I. C. Christov, P. M. Jordan, S. A. Chin-Bing and A. Warn-Varnas, Acoustic traveling waves in thermoviscous perfect gases: Kinks, acceleration waves, and shocks under the Taylor-Lighthill balance, Math. Comput. Simul. 127 (2016), 2-18.doi: 10.1016/j.matcom.2013.03.011. |
[9] |
H. Grad, Principles of the kinetic theory of gases, in: Handbuch der Physik (ed. S. Flügge), Vol. XII, Springer-Verlag, Berlin, 12 (1958), 205-294. |
[10] |
W. D. Hayes, Gasdynamic Discontinuities, Princeton University Press, Princeton, NJ, 1960, SD,5.doi: 10.1515/9781400879939. |
[11] |
P. M. Jordan and R. S. Keiffer, A note on finite-scale Navier-Stokes theory: The case of constant viscosity, strictly adiabatic flow, Phys. Lett. A, 379 (2015), 124-130.doi: 10.1016/j.physleta.2014.10.033. |
[12] |
P. M. Jordan, R. S. Keiffer and G. Saccomandi, Anomalous propagation of acoustic traveling waves in thermoviscous fluids under the Rubin-Rosenau-Gottlieb theory of dispersive media, Wave Motion, 51 (2014), 382-388.doi: 10.1016/j.wavemoti.2013.08.009. |
[13] |
P. M. Jordan, G. V. Norton, S. A. Chin-Bing and A. Warn-Varnas, On the propagation of nonlinear acoustic waves in viscous and thermoviscous fluids}, Eur. J. Mech. B/Fluids, 34 (2012), 56-63.doi: 10.1016/j.euromechflu.2012.01.016. |
[14] |
B. Kaltenbacher, Well-posedness of a general higher order model in nonlinear acoustics, Appl. Math. Lett., 63 (2017), 21-27.doi: 10.1016/j.aml.2016.07.008. |
[15] |
L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, London, 1959, p87. |
[16] |
G. Lebon and A. Cloot, Propagation of ultrasonic sound waves in dissipative dilute gases and extended irreversible thermodynamics, Wave Motion, 11 (1989), 23-32.doi: 10.1016/0165-2125(89)90010-3. |
[17] |
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, U.K., 2002.doi: 10.1017/CBO9780511791253. |
[18] |
M. J. Lighthill, Viscosity effects in sound waves of finite amplitude, in: Surveys in Mechanics (eds. G. K. Batchelor and R. M. Davies), Cambridge University Press, London, 1956, pp. 250-351. |
[19] |
M. J. Lighthill, Waves in Fluids, Cambridge University Press, Cambridge, U.K., 2001, p 1.2. |
[20] |
S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, Part I, Acustica-Acta Acustica, 82 (1996), 579-606. |
[21] |
L. G. Margolin, J. M. Reisner and P. M. Jordan, Entropy in self-similar shock profiles (in preparation). |
[22] |
M. Morduchow and P. A. Libby, On a complete solution of the one-dimensional flow equations of a viscous, heat-conducting, compressible gas, J. Aeronaut. Sci., 16 (1949), 674-684, 704.doi: 10.2514/8.11882. |
[23] |
A. Morro, Shock waves in thermo-viscous fluids with hidden variables, Arch. Mech., 32 (1980), 193-199. |
[24] |
I. Müller and T. Ruggeri, Rational Extended Thermodynamics, Springer Tracts in Natural Philosophy, Vol. 37, 2nd edn., Springer-Verlag, New York, NY, 1998.doi: 10.1007/978-1-4612-2210-1. |
[25] |
A. D. Pierce, Acoustics: An Introduction to its Physical Principles and Applications, Acoustical Society of America, Woodbury, NY, 1989. |
[26] |
Lord Rayleigh, Aerial plane waves of finite amplitude}, Proc. R. Soc. Lond. A, 84 (1910), 247-284.doi: 10.1098/rspa.1910.0075. |
[27] |
M. Roy, Sur la structure de l'onde de choc, limite d'une quasi-onde de choc dans un fluide compressible et visqueux (in French), C. R. Acad. Sci., 218 (1944), 813-816. |
[28] |
J. Serrin and Y. C. Whang, On the entropy change through a shock layer, J. Aero/Space Sci., 28 (1961), 990-991.doi: 10.2514/8.9282. |
[29] |
B. Straughan, Heat Waves, Applied Mathematical Sciences, Vol. 177, Springer, New York, NY, 2011.doi: 10.1007/978-1-4614-0493-4. |
[30] |
P. A. Thompson, Compressible-Fluid Dynamics, McGraw-Hill, New York, NY, 1972. |