September  2016, 5(3): 431-448. doi: 10.3934/eect.2016012

Nonlinear diffusion equations in fluid mixtures

1. 

DIBRIS, University of Genoa, Via Opera Pia 11A, 16145 Genoa, Italy

Received  October 2015 Revised  November 2015 Published  August 2016

The whole set of balance equations for chemically-reacting fluid mixtures is established. The diffusion flux relative to the barycentric reference is shown to satisfy a first-order, non-linear differential equation. This in turn means that the diffusion flux is given by a balance equation, not by a constitutive assumption at the outset. Next, by way of application, limiting properties of the differential equation are shown to provide Fick's law and the Nernst-Planck equation. Moreover, known generalized forces of the literature prove to be obtained by appropriate constitutive assumptions on the stresses and the interaction forces. The entropy inequality is exploited by letting the constitutive functions of any constituent depend on temperature, mass density and their gradients thus accounting for nonlocality effects. Among the results, the generalization of the classical law of mass action is provided. The balance equation for the diffusion flux makes the system of equations for diffusion hyperbolic, provided heat conduction and viscosity are disregarded. This is ascertained by the analysis of discontinuity waves of order 2 (acceleration waves). The wave speed is derived explicitly in the case of binary mixtures.
Citation: Angelo Morro. Nonlinear diffusion equations in fluid mixtures. Evolution Equations and Control Theory, 2016, 5 (3) : 431-448. doi: 10.3934/eect.2016012
References:
[1]

W. J. Boettinger, J. E. Guyer, C. E. Campbell and G. B. McFadden, Computation of the Kirkendall velocity and displacement field in a one-dimensional binary diffusion couple with a moving interface, Proc. Royal Soc. A, 463 (2007), 3347-3373. doi: 10.1098/rspa.2007.1904.

[2]

J. O'M. Bokris and A. K. N. Reddy, Modern Electrochemistry,, Plenum, (). 

[3]

R. M. Bowen and J. C. Wiese, Diffusion in mixtures of elastic materials, Int. J. Engng Sci., 7 (1969), 689-722. doi: 10.1016/0020-7225(69)90048-2.

[4]

M. F. Mc Carthy, Singular Surfaces and Waves,, in Continuum Physics II (ed. A.C. Eringen), (): 449. 

[5]

J. Crank, The Mathematics of Diffusion, Oxford, at the Clarendon Press, 1956.

[6]

J. A. Dantzig, W. J. Boettinger, J. A. Warren, G. B. McFadden, S. R. Coriell and R. F. Sekerka, Numerical modeling of diffusion-induced deformation, Metall. Mat. Trans. A, 37 (2006), 2701-2714. doi: 10.1007/BF02586104.

[7]

L. S. Darken, Diffusion, mobility and their interrelation through free energy in binary metallic systems, Trans. AIME, 175 (1948), 184-201.

[8]

M. Fabrizio, C. Giorgi and A.Morro, A thermodynamic approach to non-isothermal phase-field evolution in continuum physics, Physica D, 214 (2006), 144-156. doi: 10.1016/j.physd.2006.01.002.

[9]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D, 92 (1996), 178-192. doi: 10.1016/0167-2789(95)00173-5.

[10]

J. B. Haddow and J. L. Wegner, Plane harmonic waves for three thermoelastic theories, Math. Mech. Solids, 1 (1996), 111-127.

[11]

P. M. Jordan, Second-sound propagation in rigid, nonlinear conductors, Mech. Res. Comm., 68 (2015), 52-59. doi: 10.1016/j.mechrescom.2015.04.005.

[12]

P. J. A. M. Kerkhof and M. A. M. Geboers, Analysis and extension of the tehory of multicomponent fluid diffusion, Chem. Engng Sci., 60 (2005), 3129-3167.

[13]

B. J. Kirby, Micro- and Nanoscale Fluid Mechanics, Transport in microfluidic devices. Paperback reprint of the 2010 original. Cambridge University Press, Cambridge, 2013.

[14]

J. C. Maxwell, On the dynamical theory of gases, The Scientific Papers of J.C. Maxwell, 2 (1965), 26-78.

[15]

A. Morro, Governing equations in non-isothermal diffusion, Int. J. Non-Linear Mech., 55 (2013), 90-97. doi: 10.1016/j.ijnonlinmec.2013.04.010.

[16]

A. Morro, Evolution equations for non-simple viscoelastic solids, J. Elasticity, 105 (2011), 93-105. doi: 10.1007/s10659-010-9292-3.

[17]

I. Müller, Thermodynamics of mixtures of fluids, J. Mécanique, 14 (1975), 267-303.

[18]

I. Müller, Thermodynamics, Pitman, London 1985, ξ6.7.

[19]

I. Müller, Thermodynamics of mixtures and phase field theory, Int. J. Solids Structures, 38 (2001), 1105-1113.

[20]

I. Müller and T. Ruggeri, Extended Thermodynamics, Springer, New York 1993, ξ 2.5. doi: 10.1007/978-1-4684-0447-0.

[21]

S. Rehfeldt and J. Stichlmair, Measurement and calculation of multicomponent diffusion coefficients in liquids, Fluid Phase Equilibria, 256 (2007), 99-104. doi: 10.1016/j.fluid.2006.10.008.

[22]

R. F. Sekerka, Similarity solutions for a binary diffusion couple with diffusivity and density dependent on composition, Prog. Mat. Sci, 49 (2004), 511-536. doi: 10.1016/S0079-6425(03)00033-1.

[23]

J. Stefan, Über das Gleichgewicht und Bewegung, insbesondere die Diffusion von Gemishen, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Wien, 63 (1871), 63-124.

[24]

I. Steinbach and M. Apel, Multi phase field model for solid state transformation with elastic strain, Physica D, 217 (2006), 153-160. doi: 10.1016/j.physd.2006.04.001.

[25]

B. Straughan, Heat Waves, Springer, New York, 2011. doi: 10.1007/978-1-4614-0493-4.

[26]

C. Truesdell, Rational Thermodynamics, Springer, New York, 1984. doi: 10.1007/978-1-4612-5206-1.

[27]

C. Truesdell and R. Toupin, The classical field theories, Handbuch der Physik, Bd. III/1, Springer, Berlin, (1960), 226-793; appendix, 794-858.

show all references

References:
[1]

W. J. Boettinger, J. E. Guyer, C. E. Campbell and G. B. McFadden, Computation of the Kirkendall velocity and displacement field in a one-dimensional binary diffusion couple with a moving interface, Proc. Royal Soc. A, 463 (2007), 3347-3373. doi: 10.1098/rspa.2007.1904.

[2]

J. O'M. Bokris and A. K. N. Reddy, Modern Electrochemistry,, Plenum, (). 

[3]

R. M. Bowen and J. C. Wiese, Diffusion in mixtures of elastic materials, Int. J. Engng Sci., 7 (1969), 689-722. doi: 10.1016/0020-7225(69)90048-2.

[4]

M. F. Mc Carthy, Singular Surfaces and Waves,, in Continuum Physics II (ed. A.C. Eringen), (): 449. 

[5]

J. Crank, The Mathematics of Diffusion, Oxford, at the Clarendon Press, 1956.

[6]

J. A. Dantzig, W. J. Boettinger, J. A. Warren, G. B. McFadden, S. R. Coriell and R. F. Sekerka, Numerical modeling of diffusion-induced deformation, Metall. Mat. Trans. A, 37 (2006), 2701-2714. doi: 10.1007/BF02586104.

[7]

L. S. Darken, Diffusion, mobility and their interrelation through free energy in binary metallic systems, Trans. AIME, 175 (1948), 184-201.

[8]

M. Fabrizio, C. Giorgi and A.Morro, A thermodynamic approach to non-isothermal phase-field evolution in continuum physics, Physica D, 214 (2006), 144-156. doi: 10.1016/j.physd.2006.01.002.

[9]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D, 92 (1996), 178-192. doi: 10.1016/0167-2789(95)00173-5.

[10]

J. B. Haddow and J. L. Wegner, Plane harmonic waves for three thermoelastic theories, Math. Mech. Solids, 1 (1996), 111-127.

[11]

P. M. Jordan, Second-sound propagation in rigid, nonlinear conductors, Mech. Res. Comm., 68 (2015), 52-59. doi: 10.1016/j.mechrescom.2015.04.005.

[12]

P. J. A. M. Kerkhof and M. A. M. Geboers, Analysis and extension of the tehory of multicomponent fluid diffusion, Chem. Engng Sci., 60 (2005), 3129-3167.

[13]

B. J. Kirby, Micro- and Nanoscale Fluid Mechanics, Transport in microfluidic devices. Paperback reprint of the 2010 original. Cambridge University Press, Cambridge, 2013.

[14]

J. C. Maxwell, On the dynamical theory of gases, The Scientific Papers of J.C. Maxwell, 2 (1965), 26-78.

[15]

A. Morro, Governing equations in non-isothermal diffusion, Int. J. Non-Linear Mech., 55 (2013), 90-97. doi: 10.1016/j.ijnonlinmec.2013.04.010.

[16]

A. Morro, Evolution equations for non-simple viscoelastic solids, J. Elasticity, 105 (2011), 93-105. doi: 10.1007/s10659-010-9292-3.

[17]

I. Müller, Thermodynamics of mixtures of fluids, J. Mécanique, 14 (1975), 267-303.

[18]

I. Müller, Thermodynamics, Pitman, London 1985, ξ6.7.

[19]

I. Müller, Thermodynamics of mixtures and phase field theory, Int. J. Solids Structures, 38 (2001), 1105-1113.

[20]

I. Müller and T. Ruggeri, Extended Thermodynamics, Springer, New York 1993, ξ 2.5. doi: 10.1007/978-1-4684-0447-0.

[21]

S. Rehfeldt and J. Stichlmair, Measurement and calculation of multicomponent diffusion coefficients in liquids, Fluid Phase Equilibria, 256 (2007), 99-104. doi: 10.1016/j.fluid.2006.10.008.

[22]

R. F. Sekerka, Similarity solutions for a binary diffusion couple with diffusivity and density dependent on composition, Prog. Mat. Sci, 49 (2004), 511-536. doi: 10.1016/S0079-6425(03)00033-1.

[23]

J. Stefan, Über das Gleichgewicht und Bewegung, insbesondere die Diffusion von Gemishen, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Wien, 63 (1871), 63-124.

[24]

I. Steinbach and M. Apel, Multi phase field model for solid state transformation with elastic strain, Physica D, 217 (2006), 153-160. doi: 10.1016/j.physd.2006.04.001.

[25]

B. Straughan, Heat Waves, Springer, New York, 2011. doi: 10.1007/978-1-4614-0493-4.

[26]

C. Truesdell, Rational Thermodynamics, Springer, New York, 1984. doi: 10.1007/978-1-4612-5206-1.

[27]

C. Truesdell and R. Toupin, The classical field theories, Handbuch der Physik, Bd. III/1, Springer, Berlin, (1960), 226-793; appendix, 794-858.

[1]

Yanheng Ding, Fukun Zhao. On a diffusion system with bounded potential. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 1073-1086. doi: 10.3934/dcds.2009.23.1073

[2]

Patrick De Kepper, István Szalai. An effective design method to produce stationary chemical reaction-diffusion patterns. Communications on Pure and Applied Analysis, 2012, 11 (1) : 189-207. doi: 10.3934/cpaa.2012.11.189

[3]

Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic and Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427

[4]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[5]

Giulio Schimperna. On the Cahn-Hilliard-Darcy system with mass source and strongly separating potential. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2305-2329. doi: 10.3934/dcdss.2022008

[6]

Perla El Kettani, Danielle Hilhorst, Kai Lee. A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5615-5648. doi: 10.3934/dcds.2018246

[7]

L. Chupin. Existence result for a mixture of non Newtonian flows with stress diffusion using the Cahn-Hilliard formulation. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 45-68. doi: 10.3934/dcdsb.2003.3.45

[8]

B. Anwasia, M. Bisi, F. Salvarani, A. J. Soares. On the Maxwell-Stefan diffusion limit for a reactive mixture of polyatomic gases in non-isothermal setting. Kinetic and Related Models, 2020, 13 (1) : 63-95. doi: 10.3934/krm.2020003

[9]

Chiu-Ya Lan, Chi-Kun Lin. Asymptotic behavior of the compressible viscous potential fluid: Renormalization group approach. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 161-188. doi: 10.3934/dcds.2004.11.161

[10]

Klemens Fellner, Wolfang Prager, Bao Q. Tang. The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks. Kinetic and Related Models, 2017, 10 (4) : 1055-1087. doi: 10.3934/krm.2017042

[11]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[12]

Inwon C. Kim, Helen K. Lei. Degenerate diffusion with a drift potential: A viscosity solutions approach. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 767-786. doi: 10.3934/dcds.2010.27.767

[13]

Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160

[14]

Francisco Guillén-González, Mamadou Sy. Iterative method for mass diffusion model with density dependent viscosity. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 823-841. doi: 10.3934/dcdsb.2008.10.823

[15]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[16]

Svetlana Katok, Ilie Ugarcovici. Theory of $(a,b)$-continued fraction transformations and applications. Electronic Research Announcements, 2010, 17: 20-33. doi: 10.3934/era.2010.17.20

[17]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[18]

Svetlana Katok, Ilie Ugarcovici. Structure of attractors for $(a,b)$-continued fraction transformations. Journal of Modern Dynamics, 2010, 4 (4) : 637-691. doi: 10.3934/jmd.2010.4.637

[19]

Sallah Eddine Boutiah, Abdelaziz Rhandi, Cristian Tacelli. Kernel estimates for elliptic operators with unbounded diffusion, drift and potential terms. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 803-817. doi: 10.3934/dcds.2019033

[20]

Chengxia Lei, Jie Xiong, Xinhui Zhou. Qualitative analysis on an SIS epidemic reaction-diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 81-98. doi: 10.3934/dcdsb.2019173

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (174)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]