September  2016, 5(3): 431-448. doi: 10.3934/eect.2016012

Nonlinear diffusion equations in fluid mixtures

1. 

DIBRIS, University of Genoa, Via Opera Pia 11A, 16145 Genoa, Italy

Received  October 2015 Revised  November 2015 Published  August 2016

The whole set of balance equations for chemically-reacting fluid mixtures is established. The diffusion flux relative to the barycentric reference is shown to satisfy a first-order, non-linear differential equation. This in turn means that the diffusion flux is given by a balance equation, not by a constitutive assumption at the outset. Next, by way of application, limiting properties of the differential equation are shown to provide Fick's law and the Nernst-Planck equation. Moreover, known generalized forces of the literature prove to be obtained by appropriate constitutive assumptions on the stresses and the interaction forces. The entropy inequality is exploited by letting the constitutive functions of any constituent depend on temperature, mass density and their gradients thus accounting for nonlocality effects. Among the results, the generalization of the classical law of mass action is provided. The balance equation for the diffusion flux makes the system of equations for diffusion hyperbolic, provided heat conduction and viscosity are disregarded. This is ascertained by the analysis of discontinuity waves of order 2 (acceleration waves). The wave speed is derived explicitly in the case of binary mixtures.
Citation: Angelo Morro. Nonlinear diffusion equations in fluid mixtures. Evolution Equations & Control Theory, 2016, 5 (3) : 431-448. doi: 10.3934/eect.2016012
References:
[1]

W. J. Boettinger, J. E. Guyer, C. E. Campbell and G. B. McFadden, Computation of the Kirkendall velocity and displacement field in a one-dimensional binary diffusion couple with a moving interface,, Proc. Royal Soc. A, 463 (2007), 3347.  doi: 10.1098/rspa.2007.1904.  Google Scholar

[2]

J. O'M. Bokris and A. K. N. Reddy, Modern Electrochemistry,, Plenum, ().   Google Scholar

[3]

R. M. Bowen and J. C. Wiese, Diffusion in mixtures of elastic materials,, Int. J. Engng Sci., 7 (1969), 689.  doi: 10.1016/0020-7225(69)90048-2.  Google Scholar

[4]

M. F. Mc Carthy, Singular Surfaces and Waves,, in Continuum Physics II (ed. A.C. Eringen), (): 449.   Google Scholar

[5]

J. Crank, The Mathematics of Diffusion,, Oxford, (1956).   Google Scholar

[6]

J. A. Dantzig, W. J. Boettinger, J. A. Warren, G. B. McFadden, S. R. Coriell and R. F. Sekerka, Numerical modeling of diffusion-induced deformation,, Metall. Mat. Trans. A, 37 (2006), 2701.  doi: 10.1007/BF02586104.  Google Scholar

[7]

L. S. Darken, Diffusion, mobility and their interrelation through free energy in binary metallic systems,, Trans. AIME, 175 (1948), 184.   Google Scholar

[8]

M. Fabrizio, C. Giorgi and A.Morro, A thermodynamic approach to non-isothermal phase-field evolution in continuum physics,, Physica D, 214 (2006), 144.  doi: 10.1016/j.physd.2006.01.002.  Google Scholar

[9]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Physica D, 92 (1996), 178.  doi: 10.1016/0167-2789(95)00173-5.  Google Scholar

[10]

J. B. Haddow and J. L. Wegner, Plane harmonic waves for three thermoelastic theories,, Math. Mech. Solids, 1 (1996), 111.   Google Scholar

[11]

P. M. Jordan, Second-sound propagation in rigid, nonlinear conductors,, Mech. Res. Comm., 68 (2015), 52.  doi: 10.1016/j.mechrescom.2015.04.005.  Google Scholar

[12]

P. J. A. M. Kerkhof and M. A. M. Geboers, Analysis and extension of the tehory of multicomponent fluid diffusion,, Chem. Engng Sci., 60 (2005), 3129.   Google Scholar

[13]

B. J. Kirby, Micro- and Nanoscale Fluid Mechanics,, Transport in microfluidic devices. Paperback reprint of the 2010 original. Cambridge University Press, (2010).   Google Scholar

[14]

J. C. Maxwell, On the dynamical theory of gases,, The Scientific Papers of J.C. Maxwell, 2 (1965), 26.   Google Scholar

[15]

A. Morro, Governing equations in non-isothermal diffusion,, Int. J. Non-Linear Mech., 55 (2013), 90.  doi: 10.1016/j.ijnonlinmec.2013.04.010.  Google Scholar

[16]

A. Morro, Evolution equations for non-simple viscoelastic solids,, J. Elasticity, 105 (2011), 93.  doi: 10.1007/s10659-010-9292-3.  Google Scholar

[17]

I. Müller, Thermodynamics of mixtures of fluids,, J. Mécanique, 14 (1975), 267.   Google Scholar

[18]

I. Müller, Thermodynamics,, Pitman, (1985).   Google Scholar

[19]

I. Müller, Thermodynamics of mixtures and phase field theory,, Int. J. Solids Structures, 38 (2001), 1105.   Google Scholar

[20]

I. Müller and T. Ruggeri, Extended Thermodynamics,, Springer, (1993).  doi: 10.1007/978-1-4684-0447-0.  Google Scholar

[21]

S. Rehfeldt and J. Stichlmair, Measurement and calculation of multicomponent diffusion coefficients in liquids,, Fluid Phase Equilibria, 256 (2007), 99.  doi: 10.1016/j.fluid.2006.10.008.  Google Scholar

[22]

R. F. Sekerka, Similarity solutions for a binary diffusion couple with diffusivity and density dependent on composition,, Prog. Mat. Sci, 49 (2004), 511.  doi: 10.1016/S0079-6425(03)00033-1.  Google Scholar

[23]

J. Stefan, Über das Gleichgewicht und Bewegung, insbesondere die Diffusion von Gemishen,, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Wien, 63 (1871), 63.   Google Scholar

[24]

I. Steinbach and M. Apel, Multi phase field model for solid state transformation with elastic strain,, Physica D, 217 (2006), 153.  doi: 10.1016/j.physd.2006.04.001.  Google Scholar

[25]

B. Straughan, Heat Waves,, Springer, (2011).  doi: 10.1007/978-1-4614-0493-4.  Google Scholar

[26]

C. Truesdell, Rational Thermodynamics,, Springer, (1984).  doi: 10.1007/978-1-4612-5206-1.  Google Scholar

[27]

C. Truesdell and R. Toupin, The classical field theories,, Handbuch der Physik, (1960), 226.   Google Scholar

show all references

References:
[1]

W. J. Boettinger, J. E. Guyer, C. E. Campbell and G. B. McFadden, Computation of the Kirkendall velocity and displacement field in a one-dimensional binary diffusion couple with a moving interface,, Proc. Royal Soc. A, 463 (2007), 3347.  doi: 10.1098/rspa.2007.1904.  Google Scholar

[2]

J. O'M. Bokris and A. K. N. Reddy, Modern Electrochemistry,, Plenum, ().   Google Scholar

[3]

R. M. Bowen and J. C. Wiese, Diffusion in mixtures of elastic materials,, Int. J. Engng Sci., 7 (1969), 689.  doi: 10.1016/0020-7225(69)90048-2.  Google Scholar

[4]

M. F. Mc Carthy, Singular Surfaces and Waves,, in Continuum Physics II (ed. A.C. Eringen), (): 449.   Google Scholar

[5]

J. Crank, The Mathematics of Diffusion,, Oxford, (1956).   Google Scholar

[6]

J. A. Dantzig, W. J. Boettinger, J. A. Warren, G. B. McFadden, S. R. Coriell and R. F. Sekerka, Numerical modeling of diffusion-induced deformation,, Metall. Mat. Trans. A, 37 (2006), 2701.  doi: 10.1007/BF02586104.  Google Scholar

[7]

L. S. Darken, Diffusion, mobility and their interrelation through free energy in binary metallic systems,, Trans. AIME, 175 (1948), 184.   Google Scholar

[8]

M. Fabrizio, C. Giorgi and A.Morro, A thermodynamic approach to non-isothermal phase-field evolution in continuum physics,, Physica D, 214 (2006), 144.  doi: 10.1016/j.physd.2006.01.002.  Google Scholar

[9]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Physica D, 92 (1996), 178.  doi: 10.1016/0167-2789(95)00173-5.  Google Scholar

[10]

J. B. Haddow and J. L. Wegner, Plane harmonic waves for three thermoelastic theories,, Math. Mech. Solids, 1 (1996), 111.   Google Scholar

[11]

P. M. Jordan, Second-sound propagation in rigid, nonlinear conductors,, Mech. Res. Comm., 68 (2015), 52.  doi: 10.1016/j.mechrescom.2015.04.005.  Google Scholar

[12]

P. J. A. M. Kerkhof and M. A. M. Geboers, Analysis and extension of the tehory of multicomponent fluid diffusion,, Chem. Engng Sci., 60 (2005), 3129.   Google Scholar

[13]

B. J. Kirby, Micro- and Nanoscale Fluid Mechanics,, Transport in microfluidic devices. Paperback reprint of the 2010 original. Cambridge University Press, (2010).   Google Scholar

[14]

J. C. Maxwell, On the dynamical theory of gases,, The Scientific Papers of J.C. Maxwell, 2 (1965), 26.   Google Scholar

[15]

A. Morro, Governing equations in non-isothermal diffusion,, Int. J. Non-Linear Mech., 55 (2013), 90.  doi: 10.1016/j.ijnonlinmec.2013.04.010.  Google Scholar

[16]

A. Morro, Evolution equations for non-simple viscoelastic solids,, J. Elasticity, 105 (2011), 93.  doi: 10.1007/s10659-010-9292-3.  Google Scholar

[17]

I. Müller, Thermodynamics of mixtures of fluids,, J. Mécanique, 14 (1975), 267.   Google Scholar

[18]

I. Müller, Thermodynamics,, Pitman, (1985).   Google Scholar

[19]

I. Müller, Thermodynamics of mixtures and phase field theory,, Int. J. Solids Structures, 38 (2001), 1105.   Google Scholar

[20]

I. Müller and T. Ruggeri, Extended Thermodynamics,, Springer, (1993).  doi: 10.1007/978-1-4684-0447-0.  Google Scholar

[21]

S. Rehfeldt and J. Stichlmair, Measurement and calculation of multicomponent diffusion coefficients in liquids,, Fluid Phase Equilibria, 256 (2007), 99.  doi: 10.1016/j.fluid.2006.10.008.  Google Scholar

[22]

R. F. Sekerka, Similarity solutions for a binary diffusion couple with diffusivity and density dependent on composition,, Prog. Mat. Sci, 49 (2004), 511.  doi: 10.1016/S0079-6425(03)00033-1.  Google Scholar

[23]

J. Stefan, Über das Gleichgewicht und Bewegung, insbesondere die Diffusion von Gemishen,, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Wien, 63 (1871), 63.   Google Scholar

[24]

I. Steinbach and M. Apel, Multi phase field model for solid state transformation with elastic strain,, Physica D, 217 (2006), 153.  doi: 10.1016/j.physd.2006.04.001.  Google Scholar

[25]

B. Straughan, Heat Waves,, Springer, (2011).  doi: 10.1007/978-1-4614-0493-4.  Google Scholar

[26]

C. Truesdell, Rational Thermodynamics,, Springer, (1984).  doi: 10.1007/978-1-4612-5206-1.  Google Scholar

[27]

C. Truesdell and R. Toupin, The classical field theories,, Handbuch der Physik, (1960), 226.   Google Scholar

[1]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[2]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[3]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[5]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[6]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[7]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[8]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[9]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[10]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]