September  2016, 5(3): 449-461. doi: 10.3934/eect.2016013

The Westervelt equation with a causal propagation operator coupled to the bioheat equation.

1. 

Physics and Engineering Physics Department, Tulane University, New Orleans, LA 70118, United States, United States

Received  October 2015 Revised  January 2016 Published  August 2016

The Westervelt wave equation is frequently used to describe non-linear propagation of finite amplitude sound. If one assumes that the medium can be treated as a thermoviscous fluid, a loss mechanism can be incorporated. In this as in previous work the authors replaced the typical loss mechanism incorporated in the Westervelt equation with a causal Time Domain Propagation Factor (TDPF) which incorporates the full dispersive effects (both frequency dependent phase velocity and attenuation) in the numerical solution while remaining in the time-domain. In the present work we investigate heat deposition due to finite amplitude propagation through a dispersive medium (e.g., human tissue). To this end, the Westervelt equation with and without the TDPF is coupled to the Pennes bioheat equation and the coupled equations are solved using the method of finite differences to determine the resulting heat deposition. We show that non-linear effects are large and that proper treatment of dispersion results in significant changes as compared to modeling the medium as a thermoviscous fluid.
Citation: Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013
References:
[1]

J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves,, Journal of Computational Physics, 114 (1994), 185.  doi: 10.1006/jcph.1994.1159.  Google Scholar

[2]

R. N. Bracewell, The Fourier Transform and its Applications, $2^{nd}$, edition, (1986).   Google Scholar

[3]

G. Cohen, Higher-Order Numerical Methods for Transient Wave Equations,, Springer-Verlag, (2002).  doi: 10.1007/978-3-662-04823-8.  Google Scholar

[4]

I. M. Hallaj and R. O. Cleveland, FDTD simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound,, Journal of the Acoustic Society of America, 105 (1999).  doi: 10.1121/1.426776.  Google Scholar

[5]

Y. Jing and R. O. Cleveland, Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media,, Journal of the Acoustic Society of America, 122 (2007), 1352.  doi: 10.1121/1.2767420.  Google Scholar

[6]

P. M. Jordan and C. I. Christov, A simple finite difference scheme for modeling the finite-time blow-up of acoustic acceleration waves,, Journal of Sound and Vibration, 281 (2005), 1207.  doi: 10.1016/j.jsv.2004.03.067.  Google Scholar

[7]

R. D. L. Krönig, On the theory of dispersion of X-rays,, Journal of the Optical Society of America, 12 (1926), 547.   Google Scholar

[8]

G. V. Norton and R. D. Purrington, The Westervelt equation with viscous attenuation versus a causal propagation operator: A numerical comparison,, Journal of Sound and Vibration, 327 (2009), 163.  doi: 10.1016/j.jsv.2009.05.031.  Google Scholar

[9]

H. H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forarm,, Journal of Applied Physiology, 1 (1948), 93.   Google Scholar

[10]

A. D. Pierce, Acoustics. An Introduction to its Physical Principles and Applications,, Acoustical Society of America, (1989).   Google Scholar

[11]

R. D. Purrington and G. V. Norton, A numerical comparison of the Westervelt equation with viscous attenuation and a causal propagation operator,, Mathematics and Computers in Simulation, 82 (2012), 1287.  doi: 10.1016/j.matcom.2010.05.017.  Google Scholar

[12]

J. B. Schneider and O. M. Ramahi, The complementary operator method applied to acoustic finite-difference time-domain simulations,, Journal of the Acoustic Society of America, 104 (1998), 686.  doi: 10.1121/1.423343.  Google Scholar

[13]

M. Solovchuk, T. W. H. Sheu and M. Thiriet, Simulation of nonlinear Westervelt equation for the investigation of acoustic streaming and nonlinear propagation effects,, Journal of the Acoustic Society of America, 134 (2013), 3931.  doi: 10.1121/1.4821201.  Google Scholar

[14]

T. L. Szabo, Time domain nonlinear wave equations for lossy media,, Proceedings of the 13th International Symposium on Nonlinear Acoustics, (1993), 89.   Google Scholar

[15]

T. L. Szabo, Time domain wave equations for lossy media obeying a frequency power law,, Journal of the Acoustic Society of America, 96 (1994), 491.  doi: 10.1121/1.410434.  Google Scholar

[16]

T. L. Szabo, Causal theories and data for acoustic attenuation obeying a frequency power law,, Journal of the Acoustic Society of America, 97 (1995), 14.  doi: 10.1121/1.412332.  Google Scholar

[17]

T. L. Szabo and J. Wu, A model for longitudinal and shear wave propagation in viscoelastic media,, Journal of the Acoustic Society of America, 107 (2000), 2437.  doi: 10.1121/1.428630.  Google Scholar

[18]

T. L. Szabo, Diagnostic Ultrasound Imaging,, Elsevier Academic Press, (2004).   Google Scholar

[19]

T. Watson, Ultrasound Therapy: The Basics,, International Society for Electro-Physical Agents in Physical Therapy, (1995).   Google Scholar

show all references

References:
[1]

J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves,, Journal of Computational Physics, 114 (1994), 185.  doi: 10.1006/jcph.1994.1159.  Google Scholar

[2]

R. N. Bracewell, The Fourier Transform and its Applications, $2^{nd}$, edition, (1986).   Google Scholar

[3]

G. Cohen, Higher-Order Numerical Methods for Transient Wave Equations,, Springer-Verlag, (2002).  doi: 10.1007/978-3-662-04823-8.  Google Scholar

[4]

I. M. Hallaj and R. O. Cleveland, FDTD simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound,, Journal of the Acoustic Society of America, 105 (1999).  doi: 10.1121/1.426776.  Google Scholar

[5]

Y. Jing and R. O. Cleveland, Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media,, Journal of the Acoustic Society of America, 122 (2007), 1352.  doi: 10.1121/1.2767420.  Google Scholar

[6]

P. M. Jordan and C. I. Christov, A simple finite difference scheme for modeling the finite-time blow-up of acoustic acceleration waves,, Journal of Sound and Vibration, 281 (2005), 1207.  doi: 10.1016/j.jsv.2004.03.067.  Google Scholar

[7]

R. D. L. Krönig, On the theory of dispersion of X-rays,, Journal of the Optical Society of America, 12 (1926), 547.   Google Scholar

[8]

G. V. Norton and R. D. Purrington, The Westervelt equation with viscous attenuation versus a causal propagation operator: A numerical comparison,, Journal of Sound and Vibration, 327 (2009), 163.  doi: 10.1016/j.jsv.2009.05.031.  Google Scholar

[9]

H. H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forarm,, Journal of Applied Physiology, 1 (1948), 93.   Google Scholar

[10]

A. D. Pierce, Acoustics. An Introduction to its Physical Principles and Applications,, Acoustical Society of America, (1989).   Google Scholar

[11]

R. D. Purrington and G. V. Norton, A numerical comparison of the Westervelt equation with viscous attenuation and a causal propagation operator,, Mathematics and Computers in Simulation, 82 (2012), 1287.  doi: 10.1016/j.matcom.2010.05.017.  Google Scholar

[12]

J. B. Schneider and O. M. Ramahi, The complementary operator method applied to acoustic finite-difference time-domain simulations,, Journal of the Acoustic Society of America, 104 (1998), 686.  doi: 10.1121/1.423343.  Google Scholar

[13]

M. Solovchuk, T. W. H. Sheu and M. Thiriet, Simulation of nonlinear Westervelt equation for the investigation of acoustic streaming and nonlinear propagation effects,, Journal of the Acoustic Society of America, 134 (2013), 3931.  doi: 10.1121/1.4821201.  Google Scholar

[14]

T. L. Szabo, Time domain nonlinear wave equations for lossy media,, Proceedings of the 13th International Symposium on Nonlinear Acoustics, (1993), 89.   Google Scholar

[15]

T. L. Szabo, Time domain wave equations for lossy media obeying a frequency power law,, Journal of the Acoustic Society of America, 96 (1994), 491.  doi: 10.1121/1.410434.  Google Scholar

[16]

T. L. Szabo, Causal theories and data for acoustic attenuation obeying a frequency power law,, Journal of the Acoustic Society of America, 97 (1995), 14.  doi: 10.1121/1.412332.  Google Scholar

[17]

T. L. Szabo and J. Wu, A model for longitudinal and shear wave propagation in viscoelastic media,, Journal of the Acoustic Society of America, 107 (2000), 2437.  doi: 10.1121/1.428630.  Google Scholar

[18]

T. L. Szabo, Diagnostic Ultrasound Imaging,, Elsevier Academic Press, (2004).   Google Scholar

[19]

T. Watson, Ultrasound Therapy: The Basics,, International Society for Electro-Physical Agents in Physical Therapy, (1995).   Google Scholar

[1]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[2]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[3]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[4]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[5]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[6]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[7]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[8]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[9]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[10]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[11]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[12]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[13]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[14]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[15]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[16]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[17]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[18]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[19]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (85)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]