Citation: |
[1] |
J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, 114 (1994), 185-200.doi: 10.1006/jcph.1994.1159. |
[2] |
R. N. Bracewell, The Fourier Transform and its Applications, $2^{nd}$ edition, McGraw-Hill, New York, 1986. |
[3] |
G. Cohen, Higher-Order Numerical Methods for Transient Wave Equations, Springer-Verlag, Berlin, 2002.doi: 10.1007/978-3-662-04823-8. |
[4] |
I. M. Hallaj and R. O. Cleveland, FDTD simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound, Journal of the Acoustic Society of America, 105 (1999), L7-L12.doi: 10.1121/1.426776. |
[5] |
Y. Jing and R. O. Cleveland, Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media, Journal of the Acoustic Society of America, 122 (2007), 1352-1364.doi: 10.1121/1.2767420. |
[6] |
P. M. Jordan and C. I. Christov, A simple finite difference scheme for modeling the finite-time blow-up of acoustic acceleration waves, Journal of Sound and Vibration, 281 (2005), 1207-1216.doi: 10.1016/j.jsv.2004.03.067. |
[7] |
R. D. L. Krönig, On the theory of dispersion of X-rays, Journal of the Optical Society of America, 12 (1926), 547-557. |
[8] |
G. V. Norton and R. D. Purrington, The Westervelt equation with viscous attenuation versus a causal propagation operator: A numerical comparison, Journal of Sound and Vibration, 327 (2009), 163-172.doi: 10.1016/j.jsv.2009.05.031. |
[9] |
H. H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forarm, Journal of Applied Physiology, 1 (1948), 93-122. |
[10] |
A. D. Pierce, Acoustics. An Introduction to its Physical Principles and Applications, Acoustical Society of America, NewYork, 1989. |
[11] |
R. D. Purrington and G. V. Norton, A numerical comparison of the Westervelt equation with viscous attenuation and a causal propagation operator, Mathematics and Computers in Simulation, 82 (2012), 1287-1297.doi: 10.1016/j.matcom.2010.05.017. |
[12] |
J. B. Schneider and O. M. Ramahi, The complementary operator method applied to acoustic finite-difference time-domain simulations, Journal of the Acoustic Society of America, 104 (1998), 686-693.doi: 10.1121/1.423343. |
[13] |
M. Solovchuk, T. W. H. Sheu and M. Thiriet, Simulation of nonlinear Westervelt equation for the investigation of acoustic streaming and nonlinear propagation effects, Journal of the Acoustic Society of America, 134 (2013), 3931-3942.doi: 10.1121/1.4821201. |
[14] |
T. L. Szabo, Time domain nonlinear wave equations for lossy media, Proceedings of the 13th International Symposium on Nonlinear Acoustics, Bergen, June 1993, 89-94. |
[15] |
T. L. Szabo, Time domain wave equations for lossy media obeying a frequency power law, Journal of the Acoustic Society of America, 96 (1994), 491-500.doi: 10.1121/1.410434. |
[16] |
T. L. Szabo, Causal theories and data for acoustic attenuation obeying a frequency power law, Journal of the Acoustic Society of America, 97 (1995), 14-24.doi: 10.1121/1.412332. |
[17] |
T. L. Szabo and J. Wu, A model for longitudinal and shear wave propagation in viscoelastic media, Journal of the Acoustic Society of America, 107 (2000), 2437-2446.doi: 10.1121/1.428630. |
[18] |
T. L. Szabo, Diagnostic Ultrasound Imaging, Elsevier Academic Press, San Diego, 2004. |
[19] |
T. Watson, Ultrasound Therapy: The Basics, International Society for Electro-Physical Agents in Physical Therapy, 1995. |