\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Sharp regularity theory of second order hyperbolic equations with Neumann boundary control non-smooth in space

Abstract Related Papers Cited by
  • The purpose of this paper is to complement available literature on sharp regularity theory of second order mixed hyperbolic problem of Neumann type [13,15,26] with a series of new results in the case--so far rather unexplored--where the Neumann boundary term (input, control) possesses a regularity below $L^2(\Gamma)$ in space on the boundary $\Gamma$. We concentrate on the cases $H^{-\frac{1}{2}}(\Gamma))$, $H^{-\beta}(\Gamma))$, $H^{-1}(\Gamma))$, $\beta$ being a distinguished parameter of the problem. Our present results are consistent with the sharp result of [13,15,26] (obtained through a pseudo-differential/micro-local analysis approach), whose philosophy is expressed by a gain of $\beta$ in space regularity in going from the boundary control to the position in the interior. A number of physically relevant illustrations are given.
    Mathematics Subject Classification: Primary: 35M13, 93D20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Bociu and J. P. Zolesio, A pseudo-extractor approach to hidden boundary regularity for the wave equation with Neumann boundary condition, Journal of Differential Equations, 259 (2015), 5688-5708.doi: 10.1016/j.jde.2015.07.006.

    [2]

    L. Bociu and J. P. Zolesio, Hyperbolic equations with mixed boundary conditions: Shape differentiability analysis, Applied Mathematics & Optimization, (2016), 1-24.doi: 10.1007/s00245-016-9354-4.

    [3]

    H. O. Fattorini, The Cauchy Problem, Encyclopedia of Mathematics and its Applications, Addison-Wesley, 1983.

    [4]

    D. Fujiwawa, Concrete characterization of the domain of fractional powers of some elliptic differential operators of the second order, Proc. Japan Acad, 43 (1967), 82-86.doi: 10.3792/pja/1195521686.

    [5]

    P. Grisvard, Caracterization de quelques espaces d'interpolation, Arch. Rational Mech. Anal., 25 (1967), 40-63.doi: 10.1007/BF00281421.

    [6]

    T. Kato, Fractional powers of dissipative operators, J. Math. Soc. Japan, 13 (1961), 246-274.doi: 10.2969/jmsj/01330246.

    [7]

    I. Lasiecka, Unified theory for abstract parabolic boundary problems-a semigroup approach, Appl. Math. & Optimiz., 6 (1980), 287-333.doi: 10.1007/BF01442900.

    [8]

    I. Lasiecka, J. L. Lions and R. Triggiani, Non homogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., 65 (1986), 149-192.

    [9]

    I. Lasiecka and R. Triggiani, A cosine operator approach to modelling $L_2(0,T; L_2(\Omega))$ boundary input hyperbolic equations, Appl. Math. Optimiz., 7 (1981), 35-93.doi: 10.1007/BF01442108.

    [10]

    I. Lasiecka and R. Triggiani, Regularity of hyperbolic equations under $L_2(0,T; L_2(\Gamma))$-Dirichlet boundary terms, Appl. Math. Optimiz., 10 (1983), 275-286.doi: 10.1007/BF01448390.

    [11]

    I. Lasiecka and R. Triggiani, A lifting theorem for the time regularity of solutions to abstract equations with unbounded operators and applications to hyperbolic equations, Proceedings American Mathematical Society, 104 (1988), 745-755.doi: 10.1090/S0002-9939-1988-0964851-1.

    [12]

    I. Lasiecka and R. Triggiani, Exact boundary controllability for the wave equation with Neumann boundary control, Appl. Math. Optimiz., 19 (1989), 243-290. (Also, preliminary version in Springer-Verlag Lecture Notes, 100 (1987), 316-371.)doi: 10.1007/BF01448201.

    [13]

    I. Lasiecka and R. Triggiani, Sharp regularity for mixed second order hyperbolic equations of Neumann type Part I: The $L_2$-boundary case, Annali Matem. Pura Appl., (IV) CLVII (1990), 285-367. (Announcements in Accad. Lincei, 83 (1989), 109-113, Classe di Scienze Matematiche, Rome, Italy, and Springer-Verlag Lecture Notes, 114.)

    [14]

    I. Lasiecka and R. Triggiani, Trace regularity of the solutions of the wave equation with homogeneous Neumann boundary conditions and compactly supported data, J. Math. Anal. Appl., 141 (1989), 49-71.doi: 10.1016/0022-247X(89)90205-9.

    [15]

    I. Lasiecka and R. Triggiani, Regularity theory of hyperbolic equations with non-homogeneous Neumann boundary conditions, Part II: General boundary data, J. Diff. Eqns., 94 (1991), 112-164.doi: 10.1016/0022-0396(91)90106-J.

    [16]

    I. Lasiecka and R. Triggiani, Exact Controllability and uniform stabilization of Kirchoff plates with boundary controls only on $\Delta w|_{\Sigma},$ J. Diff. Eqts., 93 (1991), 62-101.doi: 10.1016/0022-0396(91)90022-2.

    [17]

    I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories II, Abstract Hyperbolic Systems over a Finite Time Horizon, Encyclopedia of Mathematics and Its Applications Series, Cambridge University Press, January 2000.doi: 10.1017/CBO9780511574801.002.

    [18]

    C. Lebiedzik and R. Triggiani, The optimal interior regularity for the critical case of a clamped thermoelastic system with point control revisited, Modern Aspects of the Theory of Partial Differential Equations, Operator Theory Advances and Applications, M. Ruzhansky, Jens Wirth Editors, Birkhawser, 216 (2010), 243-259.doi: 10.1007/978-3-0348-0069-3_14.

    [19]

    J. L. Lions, Controllabilite Exacte es Stabilization de Systemes Distribues, vol 1, Masson, 1988.

    [20]

    J. L. Lions and E. Magenes, Nonhomogeneous Boundary Value Propblems and Applications, Vol. I, Springer-Verlag, 1972.

    [21]

    J. L. Lions and E. Magenes, Nonhomogeneous Boundary Value Propblems and Applications, Vol. II, Springer-Verlag, 1972.

    [22]

    S. Myatake, Mixed problems for hyperbolic equations of second order, J. Math. Kyoto Univ, 130 (1973), 435-487.

    [23]

    R. Sakamoto, Hyperbolic Boundary Value Problems, Cambridge University Press, London/New York, 1982.

    [24]

    M. Sova, Cosine operator functions, Rozprawy Mat, 49 (1966), 1-47.

    [25]

    W. Symes, A trace theorem for solutions of the wave equation, and the remote determination of acoustic sources, Mathematical Methods in the Applied Sciences, 5 (1983), 131-152.doi: 10.1002/mma.1670050110.

    [26]

    D. Tataru, On the regularity of boundary traces for the wave equation, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 26 (1998), 185-206.

    [27]

    R. Triggiani, A cosine operator approach to modeling boundary input problems for hyperbolic systems, Springer-Verlag Lecture Notes in Control and Information Sciences, 6 (1978), 380-390.

    [28]

    R. Triggiani, Interior and boundary regularity of the wave equation of interior point control, J. Diff. Eqts, 103 (1993), 394-420.doi: 10.1006/jdeq.1993.1057.

    [29]

    R. Triggiani, The critical case of clamped thermoelastic systems with interior point control: optimal interior and boundary regularity results, J. Diff. Eqts., 245 (2008), 3764-3805.doi: 10.1016/j.jde.2008.02.033.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(280) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return