Citation: |
[1] |
G. Avalos and M. Dvorak, A new maximality argument for a coupled fluid-structure interaction, with implications for a divergence-free finite element method, Appl. Math. (Warsaw), 35 (2008), 259-280.doi: 10.4064/am35-3-2. |
[2] |
G. Avalos and D. Toundykov, A uniform discrete inf-sup inequality for finite element hydro-elastic models, 2016, To appear in Evol. Equ. Control Theory, 2016. |
[3] |
H. Beirão da Veiga, On the existence of strong solutions to a coupled fluid-structure evolution problem, Journal of Mathematical Fluid Mechanics, 6 (2004), 21-52.doi: 10.1007/s00021-003-0082-5. |
[4] |
M. Bercovier and O. Pironneau, Error estimates for finite element method solution of the Stokes problem in the primitive variables, Numer. Math., 33 (1979), 211-224.doi: 10.1007/BF01399555. |
[5] |
L. Bociu, D. Toundykov and J.-P. Zolésio, Well-posedness analysis for the total linearization of a fluid-elasticity interaction, SIAM J. Math. Anal., 47 (2015), 1958-2000.doi: 10.1137/140970689. |
[6] |
L. Bociu and J.-P. Zolésio, Linearization of a coupled system of nonlinear elasticity and viscous fluid, in Modern aspects of the theory of partial differential equations, vol. 216 of Oper. Theory Adv. Appl., Birkhäuser/Springer Basel AG, Basel, 2011, 93-120.doi: 10.1007/978-3-0348-0069-3_6. |
[7] |
L. Bociu and J.-P. Zolésio, Sensitivity analysis for a free boundary fluid-elasticity interaction, Evol. Equ. Control Theory, 2 (2013), 55-79, To appear in Evolution Equations and Control Theory.doi: 10.3934/eect.2013.2.55. |
[8] |
M. Boulakia, Existence of weak solutions for the three-dimensional motion of an elastic structure in an incompressible fluid, J. Math. Fluid Mech., 9 (2007), 262-294.doi: 10.1007/s00021-005-0201-7. |
[9] |
J. Chazarain and A. Piriou, Caractérisation des problèmes mixtes hyperboliques bien posés, Ann. Inst. Fourier (Grenoble), 22 (1972), 193-237.doi: 10.5802/aif.438. |
[10] |
P. G. Ciarlet, Mathematical Elasticity. Vol. I, vol. 20 of Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam, 1988, Three-dimensional elasticity. |
[11] |
C. Conca, J. Planchard, B. Thomas and R. Dautray, Problèmes Mathématiques en Couplage Fluide-Structure: Applications Aux Faisceaux Tubulaires, Editions Eyrolles, Paris, 1994. |
[12] |
C. Conca, J. San Martín H. and M. Tucsnak, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations, 25 (2000), 1019-1042.doi: 10.1080/03605300008821540. |
[13] |
D. Coutand and S. Shkoller, The interaction between quasilinear elastodynamics and the Navier-Stokes equations, Arch. Ration. Mech. Anal., 179 (2006), 303-352.doi: 10.1007/s00205-005-0385-2. |
[14] |
B. Desjardins and M. J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal., 146 (1999), 59-71.doi: 10.1007/s002050050136. |
[15] |
B. Desjardins, M. J. Esteban, C. Grandmont and P. Le Tallec, Weak solutions for a fluid-elastic structure interaction model, Rev. Mat. Complut., 14 (2001), 523-538.doi: 10.5209/rev_REMA.2001.v14.n2.17030. |
[16] |
J. Donea, S. Giuliani and J. Halleux, An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions, Computer Methods in Applied Mechanics and Engineering, 33 (1982), 689-723.doi: 10.1016/0045-7825(82)90128-1. |
[17] |
T. Fanion, M. Fernández and P. le Tallec, Deriving adequate formulations for fluid-structure interaction problems: From ALE to transpiration, in Fluid-structure interaction, Innov. Tech. Ser., Kogan Page Sci., London, 2003, 51-79. |
[18] |
E. Feireisl, On the motion of rigid bodies in a viscous incompressible fluid, J. Evol. Equ., 3 (2003), 419-441, Dedicated to Philippe Bénilan.doi: 10.1007/s00028-003-0110-1. |
[19] |
M. A. Fernández and P. Le Tallec, Linear stability analysis in fluid-structure interaction with transpiration. I. Formulation and mathematical analysis, Comput. Methods Appl. Mech. Engrg., 192 (2003), 4805-4835.doi: 10.1016/j.cma.2003.07.001. |
[20] |
M. A. Fernández and P. Le Tallec, Linear stability analysis in fluid-structure interaction with transpiration. II. Numerical analysis and applications, Comput. Methods Appl. Mech. Engrg., 192 (2003), 4837-4873.doi: 10.1016/j.cma.2003.08.001. |
[21] |
M. A. Fernández and M. Moubachir, An exact block-Newton algorithm for solving fluid-structure interaction problems, C. R. Math. Acad. Sci. Paris, 336 (2003), 681-686.doi: 10.1016/S1631-073X(03)00151-1. |
[22] |
A. R. Galper and T. Miloh, Motion stability of a deformable body in an ideal fluid with applications to the N spheres problem, Phys. Fluids, 10 (1998), 119-130.doi: 10.1063/1.869570. |
[23] |
A. Georgescu, Hydrodynamic Stability Theory, vol. 9 of Mechanics: Analysis, Martinus Nijhoff Publishers, Dordrecht, 1985, Translated from the Romanian, Translation edited by David Sattinger.doi: 10.1007/978-94-017-1814-1. |
[24] |
C. Grandmont, Existence for a three-dimensional steady state fluid-structure interaction problem, J. Math. Fluid Mech., 4 (2002), 76-94.doi: 10.1007/s00021-002-8536-9. |
[25] |
C. Grandmont and Y. Maday, Existence for an unsteady fluid-structure interaction problem, M2AN Math. Model. Numer. Anal., 34 (2000), 609-636.doi: 10.1051/m2an:2000159. |
[26] |
C. Grandmont and Y. Maday, Fluid-structure interaction: A theoretical point of view, in Fluid-structure interaction, Innov. Tech. Ser., Kogan Page Sci., London, 2003, 1-22. |
[27] |
M. D. Gunzburger, H.-C. Lee and G. A. Seregin, Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech., 2 (2000), 219-266.doi: 10.1007/PL00000954. |
[28] |
K. C. Hall and W. S. Clark, Linearized euler predictions of unsteady aerodynamic loads in cascades, AIAA Journal, 31 (1993), 540-550.doi: 10.2514/3.11363. |
[29] |
K. C. Hall and E. F. Crawley, Calculation of unsteady flows in turbomachinery using the linearizedeuler equations, AIAA Journal, 27 (1989), 777-787.doi: 10.2514/3.10178. |
[30] |
K.-H. Hoffmann and V. N. Starovoitov, On a motion of a solid body in a viscous fluid. Two-dimensional case, Adv. Math. Sci. Appl., 9 (1999), 633-648. |
[31] |
T. J. R. Hughes, W. K. Liu and T. K. Zimmermann, Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput. Methods Appl. Mech. Engrg., 29 (1981), 329-349.doi: 10.1016/0045-7825(81)90049-9. |
[32] |
M. Ignatova, I. Kukavica, I. Lasiecka and A. Tuffaha, On well-posedness and small data global existence for an interface damped free boundary fluid-structure model, Nonlinearity, 27 (2014), 467-499.doi: 10.1088/0951-7715/27/3/467. |
[33] |
M. Ikawa, A mixed problem for hyperbolic equations of second order with non-homogeneous Neumann type boundary condition, Osaka J. Math., 6 (1969), 339-374. |
[34] |
M. Lesoinne and C. Farhat, Re-engineering of an aeroelastic code for solving eigen problems in all flight regimes, in 4th European Computational Fluid Dynamics Conference, Athens, Greece, 1998, 1052-1061. |
[35] |
M. Lesoinne, M. Sarkis, U. Hetmaniuk and C. Farhat, A linearized method for the frequency analysis of three-dimensional fluid/structure interaction problems in all flow regimes, Computer Methods in Applied Mechanics and Engineering, 190 (2001), 3121-3146, Advances in Computational Methods for Fluid-Structure Interaction.doi: 10.1016/S0045-7825(00)00385-6. |
[36] |
M. J. Lighthill, On displacement thickness, J. Fluid Mech., 4 (1958), 383-392.doi: 10.1017/S0022112058000525. |
[37] |
G. Mortchéléwicz, Application of linearized euler equations to flutter, in 85th AGARD SMP Meeting, Aalborg, Denmark, 1997. |
[38] |
B. Palmerio, A two-dimensional FEM adaptive moving-node method for steady Euler flow simulations, Computer Methods in Applied Mechanics and Engineering, 71 (1988), 315-340.doi: 10.1016/0045-7825(88)90038-2. |
[39] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44, Springer-Verlag, 1983.doi: 10.1007/978-1-4612-5561-1. |
[40] |
S. Piperno and C. Farhat, Design of efficient partitioned procedures for the transient solution of aeroelastic problems, in Fluid-structure interaction, Innov. Tech. Ser., Kogan Page Sci., London, 2003, 23-49. |
[41] |
P. Raj and B. Harris, Using surface transpiration with an Euler method for cost-effective aerodynamic analysis, in AIAA 24th Applied Aerodynamics Conference, 93-3506, Monterey, Canada, 1993. |
[42] |
R. Sakamoto, Hyperbolic Boundary Value Problems, Cambridge University Press, Cambridge, 1982, Translated from the Japanese by Katsumi Miyahara. |
[43] |
J. A. San Martín, V. Starovoitov and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal., 161 (2002), 113-147.doi: 10.1007/s002050100172. |
[44] |
T. Takahashi and M. Tucsnak, Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid, J. Math. Fluid Mech., 6 (2004), 53-77.doi: 10.1007/s00021-003-0083-4. |
[45] |
N. Takashi and T. J. Hughes, An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body, Computer Methods in Applied Mechanics and Engineering, 95 (1992), 115-138.doi: 10.1016/0045-7825(92)90085-X. |
[46] |
P. L. Tallec and J. Mouro, Fluid structure interaction with large structural displacements, Computer Methods in Applied Mechanics and Engineering, 190 (2001), 3039-3067, Advances in Computational Methods for Fluid-Structure Interaction.doi: 10.1016/S0045-7825(00)00381-9. |
[47] |
J. Tambača, M. Kosor, S. Čanić and D. Paniagua, Mathematical modeling of vascular stents, SIAM J. Appl. Math., 70 (2010), 1922-1952.doi: 10.1137/080722618. |
[48] |
C. Taylor and P. Hood, A numerical solution of the Navier-Stokes equations using the finite element technique, Internat. J. Comput. & Fluids, 1 (1973), 73-100. |
[49] |
R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations, RAIRO Anal. Numér., 18 (1984), 175-182. |
[50] |
T. Wick and W. Wollner, On the Differentiability of Fluid-Structure Interaction Problems with Respect to the Problem Data, Technical Report 2014-16, RICAM, 2014. |