December  2016, 5(4): 605-629. doi: 10.3934/eect.2016021

On interaction of circular cylindrical shells with a Poiseuille type flow

1. 

Kharkov National Universit, Department of Mathematics and Mechanics, 4 Svobody sq, 61077 Kharkov

2. 

Department of Mathematics and Mechanics, Kharkov Karazin National University, 4, Svobody sq., Kharkov 61077

Received  July 2016 Revised  September 2016 Published  October 2016

We study dynamics of a coupled system consisting of the 3D Navier--Stokes equations which is linearized near a certain Poiseuille type flow between two unbounded circular cylinders and nonlinear elasticity equations for the transversal displacements of the bounding cylindrical shells. We show that this problem generates an evolution semigroup $S_t$ possessing a compact finite-dimensional global attractor.
Citation: Igor Chueshov, Tamara Fastovska. On interaction of circular cylindrical shells with a Poiseuille type flow. Evolution Equations & Control Theory, 2016, 5 (4) : 605-629. doi: 10.3934/eect.2016021
References:
[1]

M. S. Agranovich, Sobolev Spaces, Their Generalizations, and Elliptic Problems in Smooth and Lipschitz Domains,, Springer-Verlag, (2015).  doi: 10.1007/978-3-319-14648-5.  Google Scholar

[2]

G. Avalos, The strong stability and instability of a fluid-structure semigroup,, Appl. Math. Optim., 55 (2007), 163.  doi: 10.1007/s00245-006-0884-z.  Google Scholar

[3]

G. Avalos and F. Bucci, Exponential decay properties of a mathematical model for a certain fluid-structure interaction,, New prospects in direct, 10 (2014), 49.  doi: 10.1007/978-3-319-11406-4_3.  Google Scholar

[4]

G. Avalos and R. Triggiani, Semigroup well-posedness in the energy space of a parabolic- hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction,, Discr. Contin. Dyn. Sys. Ser.S, 2 (2009), 417.  doi: 10.3934/dcdss.2009.2.417.  Google Scholar

[5]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, North-Holland, (1992).   Google Scholar

[6]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model,, in Fluids and Waves, (2007), 55.  doi: 10.1090/conm/440/08476.  Google Scholar

[7]

A. Chambolle, B. Desjardins, M. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate., J. Math. Fluid Mech., 7 (2005), 368.  doi: 10.1007/s00021-004-0121-y.  Google Scholar

[8]

I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems,, Springer-Verlag, (2015).  doi: 10.1007/978-3-319-22903-4.  Google Scholar

[9]

I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems,, Acta, (2002).   Google Scholar

[10]

I. Chueshov, A global attractor for a fluid-plate interaction model accounting only for longitudinal deformations of the plate,, Math. Meth. Appl. Sci., 34 (2011), 1801.  doi: 10.1002/mma.1496.  Google Scholar

[11]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping,, Mem. Amer. Math. Soc., 195 (2008).  doi: 10.1090/memo/0912.  Google Scholar

[12]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations,, Springer-Verlag, (2010).  doi: 10.1007/978-0-387-87712-9.  Google Scholar

[13]

I. Chueshov and I. Ryzhkova, A global attractor for a fluid-plate interaction model,, Comm. Pure Appl. Anal., 12 (2013), 1635.  doi: 10.3934/cpaa.2013.12.1635.  Google Scholar

[14]

I. Chueshov and I. Ryzhkova, Unsteady interaction of a viscous fluid with an elastic shell modeled by full von Karman equations,, J. Diff. Eqs., 254 (2013), 1833.  doi: 10.1016/j.jde.2012.11.006.  Google Scholar

[15]

I. Chueshov and I. Ryzhkova, On the interaction of an elastic wall with a Poiseuille-type flow,, Ukrainian Mathematical Journal, 65 (2013), 158.  doi: 10.1007/s11253-013-0771-0.  Google Scholar

[16]

D. Coutand and S. Shkoller, Motion of an elastic solid inside an incompressible viscous fluid,, Arch. Ration. Mech. Anal., 176 (2005), 25.  doi: 10.1007/s00205-004-0340-7.  Google Scholar

[17]

E. H. Donnell, A new theory for the buckling of thin cylinders under axial compression and bending,, Trans. ASME, 56 (1934), 795.   Google Scholar

[18]

D. A. Evensen, Nonlinear Fexural Vibrations of Thin-Walled Circular Cylinders,, NASA TN D-4090., (1967).   Google Scholar

[19]

G. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems,, $2^{nd}$ edition, (2011).  doi: 10.1007/978-0-387-09620-9.  Google Scholar

[20]

G. Galdi, C. Simader and H. Sohr, A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in $W^{-1/q,q}$,, Math. Annalen, 331 (2005), 41.  doi: 10.1007/s00208-004-0573-7.  Google Scholar

[21]

N. Große and C. Schneider, Sobolev spaces on Riemannian manifolds with bounded geometry: general coordinates and traces,, Math. Nachr., 286 (2013), 1586.  doi: 10.1002/mana.201300007.  Google Scholar

[22]

Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem,, Discrete Contin. Dyn. Syst., 9 (2003), 633.  doi: 10.3934/dcds.2003.9.633.  Google Scholar

[23]

D. Fujiwara, Concrete characterizations of the domains of fractional powers of some elliptic differential operators of the second order,, Proc. Japan Acad., 43 (1967), 82.  doi: 10.3792/pja/1195521686.  Google Scholar

[24]

C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate,, SIAM J. Math. Anal., 40 (2008), 716.  doi: 10.1137/070699196.  Google Scholar

[25]

M. Grobbelaar-Van Dalsen, A new approach to the stabilization of a fluid-structure interaction model,, Applicable Analysis 88 (2009), 88 (2009), 1053.  doi: 10.1080/00036810903114841.  Google Scholar

[26]

M. Grobbelaar-Van Dalsen, Strong stability for a fluid-structure model,, Math. Methods Appl. Sci., 32 (2009), 1452.  doi: 10.1002/mma.1104.  Google Scholar

[27]

M. Guidorzi, M. Padula and P. I. Plotnikov, Hopf solutions to a fluid-elastic interaction model,, MMAS, 18 (2008), 215.  doi: 10.1142/S0218202508002668.  Google Scholar

[28]

O. Ladyzhenskaya, Mathematical Theory of Viscous Incompressible Flow,, Gordon and Breach, (1969).   Google Scholar

[29]

J.-L. Lions and E. Magenes, Problémes Aux Limites non Homogénes et Applications,, Vol. 1, (1968).   Google Scholar

[30]

A. Osses and J. Puel, Approximate controllability for a linear model of fluid structure interaction,, ESAIM: Control, 4 (1999), 497.  doi: 10.1051/cocv:1999119.  Google Scholar

[31]

M. E. Taylor, Partial Differential Equations 1. Basic theory,, Springer-Verlag, (1996).  doi: 10.1007/978-1-4684-9320-7.  Google Scholar

[32]

R. Temam, Infinite-Dimensional Dynamical Dystems in Mechanics and Physics,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[33]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis,, Reprint of the 1984 edition, (1984).   Google Scholar

[34]

H. Triebel, Theory of Function Spaces 2,, Birkhäuser, (1983).  doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[35]

H. Triebel, Interpolation Theory, Functional Spaces and Differential Operators,, North Holland, (1978).   Google Scholar

show all references

References:
[1]

M. S. Agranovich, Sobolev Spaces, Their Generalizations, and Elliptic Problems in Smooth and Lipschitz Domains,, Springer-Verlag, (2015).  doi: 10.1007/978-3-319-14648-5.  Google Scholar

[2]

G. Avalos, The strong stability and instability of a fluid-structure semigroup,, Appl. Math. Optim., 55 (2007), 163.  doi: 10.1007/s00245-006-0884-z.  Google Scholar

[3]

G. Avalos and F. Bucci, Exponential decay properties of a mathematical model for a certain fluid-structure interaction,, New prospects in direct, 10 (2014), 49.  doi: 10.1007/978-3-319-11406-4_3.  Google Scholar

[4]

G. Avalos and R. Triggiani, Semigroup well-posedness in the energy space of a parabolic- hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction,, Discr. Contin. Dyn. Sys. Ser.S, 2 (2009), 417.  doi: 10.3934/dcdss.2009.2.417.  Google Scholar

[5]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, North-Holland, (1992).   Google Scholar

[6]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model,, in Fluids and Waves, (2007), 55.  doi: 10.1090/conm/440/08476.  Google Scholar

[7]

A. Chambolle, B. Desjardins, M. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate., J. Math. Fluid Mech., 7 (2005), 368.  doi: 10.1007/s00021-004-0121-y.  Google Scholar

[8]

I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems,, Springer-Verlag, (2015).  doi: 10.1007/978-3-319-22903-4.  Google Scholar

[9]

I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems,, Acta, (2002).   Google Scholar

[10]

I. Chueshov, A global attractor for a fluid-plate interaction model accounting only for longitudinal deformations of the plate,, Math. Meth. Appl. Sci., 34 (2011), 1801.  doi: 10.1002/mma.1496.  Google Scholar

[11]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping,, Mem. Amer. Math. Soc., 195 (2008).  doi: 10.1090/memo/0912.  Google Scholar

[12]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations,, Springer-Verlag, (2010).  doi: 10.1007/978-0-387-87712-9.  Google Scholar

[13]

I. Chueshov and I. Ryzhkova, A global attractor for a fluid-plate interaction model,, Comm. Pure Appl. Anal., 12 (2013), 1635.  doi: 10.3934/cpaa.2013.12.1635.  Google Scholar

[14]

I. Chueshov and I. Ryzhkova, Unsteady interaction of a viscous fluid with an elastic shell modeled by full von Karman equations,, J. Diff. Eqs., 254 (2013), 1833.  doi: 10.1016/j.jde.2012.11.006.  Google Scholar

[15]

I. Chueshov and I. Ryzhkova, On the interaction of an elastic wall with a Poiseuille-type flow,, Ukrainian Mathematical Journal, 65 (2013), 158.  doi: 10.1007/s11253-013-0771-0.  Google Scholar

[16]

D. Coutand and S. Shkoller, Motion of an elastic solid inside an incompressible viscous fluid,, Arch. Ration. Mech. Anal., 176 (2005), 25.  doi: 10.1007/s00205-004-0340-7.  Google Scholar

[17]

E. H. Donnell, A new theory for the buckling of thin cylinders under axial compression and bending,, Trans. ASME, 56 (1934), 795.   Google Scholar

[18]

D. A. Evensen, Nonlinear Fexural Vibrations of Thin-Walled Circular Cylinders,, NASA TN D-4090., (1967).   Google Scholar

[19]

G. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems,, $2^{nd}$ edition, (2011).  doi: 10.1007/978-0-387-09620-9.  Google Scholar

[20]

G. Galdi, C. Simader and H. Sohr, A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in $W^{-1/q,q}$,, Math. Annalen, 331 (2005), 41.  doi: 10.1007/s00208-004-0573-7.  Google Scholar

[21]

N. Große and C. Schneider, Sobolev spaces on Riemannian manifolds with bounded geometry: general coordinates and traces,, Math. Nachr., 286 (2013), 1586.  doi: 10.1002/mana.201300007.  Google Scholar

[22]

Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem,, Discrete Contin. Dyn. Syst., 9 (2003), 633.  doi: 10.3934/dcds.2003.9.633.  Google Scholar

[23]

D. Fujiwara, Concrete characterizations of the domains of fractional powers of some elliptic differential operators of the second order,, Proc. Japan Acad., 43 (1967), 82.  doi: 10.3792/pja/1195521686.  Google Scholar

[24]

C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate,, SIAM J. Math. Anal., 40 (2008), 716.  doi: 10.1137/070699196.  Google Scholar

[25]

M. Grobbelaar-Van Dalsen, A new approach to the stabilization of a fluid-structure interaction model,, Applicable Analysis 88 (2009), 88 (2009), 1053.  doi: 10.1080/00036810903114841.  Google Scholar

[26]

M. Grobbelaar-Van Dalsen, Strong stability for a fluid-structure model,, Math. Methods Appl. Sci., 32 (2009), 1452.  doi: 10.1002/mma.1104.  Google Scholar

[27]

M. Guidorzi, M. Padula and P. I. Plotnikov, Hopf solutions to a fluid-elastic interaction model,, MMAS, 18 (2008), 215.  doi: 10.1142/S0218202508002668.  Google Scholar

[28]

O. Ladyzhenskaya, Mathematical Theory of Viscous Incompressible Flow,, Gordon and Breach, (1969).   Google Scholar

[29]

J.-L. Lions and E. Magenes, Problémes Aux Limites non Homogénes et Applications,, Vol. 1, (1968).   Google Scholar

[30]

A. Osses and J. Puel, Approximate controllability for a linear model of fluid structure interaction,, ESAIM: Control, 4 (1999), 497.  doi: 10.1051/cocv:1999119.  Google Scholar

[31]

M. E. Taylor, Partial Differential Equations 1. Basic theory,, Springer-Verlag, (1996).  doi: 10.1007/978-1-4684-9320-7.  Google Scholar

[32]

R. Temam, Infinite-Dimensional Dynamical Dystems in Mechanics and Physics,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[33]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis,, Reprint of the 1984 edition, (1984).   Google Scholar

[34]

H. Triebel, Theory of Function Spaces 2,, Birkhäuser, (1983).  doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[35]

H. Triebel, Interpolation Theory, Functional Spaces and Differential Operators,, North Holland, (1978).   Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[3]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[4]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[5]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[6]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[7]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[8]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[9]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[10]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[11]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[12]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[13]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[14]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[15]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[16]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[17]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[18]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[19]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[20]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]