Advanced Search
Article Contents
Article Contents

Lumpability of linear evolution Equations in Banach spaces

Abstract Full Text(HTML) Related Papers Cited by
  • We analyze the lumpability of linear systems on Banach spaces, namely, the possibility of projecting the dynamics by a linear reduction operator onto a smaller state space in which a self-contained dynamical description exists. We obtain conditions for lumpability of dynamics defined by unbounded operators using the theory of strongly continuous semigroups. We also derive results from the dual space point of view using sun dual theory. Furthermore, we connect the theory of lumping to several results from operator factorization. We indicate several applications to particular systems, including delay differential equations.

    Mathematics Subject Classification: 34G10, 47D06, 34K30, 34A05, 47N70.


    \begin{equation} \\ \end{equation}
  • 加载中
  •   W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, One-Parameter Semigroups of Positive Operators vol. 1184 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1986. doi: 10.1007/BFb0074922.
      L. Arlotti , A new characterization of B-bounded semigroups with application to implicit evolution equations, Abstract and Applied Analysis, 5 (2000) , 227-243.  doi: 10.1155/S1085337501000331.
      P. Auger , R.B. de la Parra , J.C. Poggiale , E. Sánchez  and  T. Nguyen-Huu , Aggregation of variables and applications to population dynamics, in Structured Population Models in Biology and Epidemiology (eds. P. Magal and S. Ruan), Springer, Berlin, Heidelberg, 1936 (2008) , 209-263.  doi: 10.1007/978-3-540-78273-5_5.
      J. Banasiak , Generation results for B-bounded semigroups, Annali di Matematica Pura ed Applicata, 175 (1998) , 307-326.  doi: 10.1007/BF01783690.
      B.A. Barnes , Majorization, range inclusion, and factorization for bounded linear operators, Proc. Amer. Math. Soc., 133 (2005) , 155-162 (electronic).  doi: 10.1090/S0002-9939-04-07495-7.
      A. Belleni-Morante , B-bounded semigroups and applications, Annali di Matematica Pura ed Applicata, 170 (1996) , 359-376.  doi: 10.1007/BF01758995.
      A. Belleni-Morante  and  S. Totaro , The successive reflection method in three dimensional particle transport, Journal of Mathematical Physics, 37 (1996) , 2815-2823.  doi: 10.1063/1.531541.
      L. Block , J. Keesling  and  D. Ledis , Semi-conjugacies and inverse limit spaces, Journal of Difference Equations and Applications, 18 (2012) , 627-645.  doi: 10.1080/10236198.2011.611803.
      E.M. Bollt  and  J.D. Skufca , On comparing dynamical systems by defective conjugacy: A symbolic dynamics interpretation of commuter functions, Physica D: Nonlinear Phenomena, 239 (2010) , 579-590.  doi: 10.1016/j.physd.2009.12.007.
      P. Buchholz , Exact and ordinary lumpability in finite Markov chains, J. Appl. Probab., 31 (1994) , 59-75.  doi: 10.1017/S0021900200107338.
      P. Coxson , Lumpability and observability of linear systems, Journal of Mathematical Analysis and Applications, 99 (1984) , 435-446.  doi: 10.1016/0022-247X(84)90224-5.
      R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory vol. 21 of Texts in Applied Mathematics, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4224-6.
      R.G. Douglas , On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 17 (1966) , 413-415.  doi: 10.1090/S0002-9939-1966-0203464-1.
      M.R. Embry , Factorization of operators on Banach space, Proc. Amer. Math. Soc., 38 (1973) , 587-590.  doi: 10.1090/S0002-9939-1973-0312287-8.
      K. -J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations vol. 194 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2000.
      H.O. Fattorini , Some remarks on complete controllability, SIAM J. Control, 4 (1966) , 686-694.  doi: 10.1137/0304048.
      M. Forough , Majorization, range inclusion, and factorization for unbounded operators on Banach spaces, Linear Algebra Appl., 449 (2014) , 60-67.  doi: 10.1016/j.laa.2014.02.033.
      S. Goldberg, Unbounded Linear Operators Dover Publications, Inc. , New York, 1985, Theory and applications, Reprint of the 1966 edition.
      L. Gurvits  and  J. Ledoux , Markov property for a function of a Markov chain: A linear algebra approach, Linear Algebra and its Applications, 404 (2005) , 85-117.  doi: 10.1016/j.laa.2005.02.007.
      E. Hille, Functional Analysis and Semi-Groups American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, New York, 1948.
      J. Ledoux , On weak lumpability of denumerable Markov chains, Statist. Probab. Lett., 25 (1995) , 329-339.  doi: 10.1016/0167-7152(94)00238-5.
      G. Li  and  H. Rabitz , A general analysis of exact lumping in chemical kinetics, Chemical Engineering Science, 44 (1989) , 1413-1430. 
      A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.
      Z. Rózsa and J. Tóth, Exact linear lumping in abstract spaces, in Proceedings of the 7th Colloquium on the Qualitative Theory of Differential Equations vol. 7, Electron. J. Qual. Theory Differ. Equ. , Szeged, 2004, No. 21, 20 pp. (electronic).
      A. Tomlin , G. Li , H. Rabitz  and  J. Tóth , The effect of lumping and expanding on kinetic differential equations, SIAM J. Appl. Math., 57 (1997) , 1531-1556.  doi: 10.1137/S0036139995293294.
      R. Triggiani , Extensions of rank conditions for controllability and observability to banach spaces and unbounded operators, SIAM J. Control, 14 (1976) , 313-338.  doi: 10.1137/0314022.
      R. Triggiani , Controllability and observability in Banach space with bounded operators, SIAM J. Control, 13 (1975) , 462-491.  doi: 10.1137/0313028.
      J. van Neerven, The Adjoint of a Semigroup of Linear Operators vol. 1529 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1992. doi: 10.1007/BFb0085008.
      J. Wei  and  J. Kuo , Lumping analysis in monomolecular reaction systems. Analysis of the exactly lumpable system, Industrial & Engineering Chemistry Fundamentals, 8 (1969) , 114-123.  doi: 10.1021/i160029a019.
      H.J. Zwart , Geometric theory for infinite dimensional systems, Geometric Theory for Infinite Dimensional Systems: Lecture Notes in Control and Information Sciences, 115 (1989) , 1-7.  doi: 10.1007/BFb0044353.
  • 加载中

Article Metrics

HTML views(436) PDF downloads(132) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint