-
Previous Article
Identification problems of retarded differential systems in Hilbert spaces
- EECT Home
- This Issue
-
Next Article
Distributed optimal control of a nonstandard nonlocal phase field system with double obstacle potential
Indirect stabilization of hyperbolic systems through resolvent estimates
Radon Institute for Computational and Applied Mathematics - RICAM, Altenbergerstraße 69, 4040 - Linz, Austria |
We prove a sharp decay rate for the total energy of two classes of systems of weakly coupled hyperbolic equations. We show that we can stabilize the full system through a single damping term, in feedback form, acting on one component only of the system (\emph{indirect stabilization}). The energy estimate is achieved by means of suitable estimates of the resolvent operator norm. We apply this technique to a wave-wave system and to a wave-Petrovsky system.
References:
[1] |
F. Alabau,
Stabilisation frontiére indirecte de systémes faiblement couplés, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 1015-1020.
doi: 10.1016/S0764-4442(99)80316-4. |
[2] |
F. Alabau, P. Cannarsa and V. Komornik,
Indirect internal stabilization of weakly coupled evolution equations, J. Evol. Equ., 2 (2002), 127-150.
doi: 10.1007/s00028-002-8083-0. |
[3] |
F. Alabau-Boussouira, P. Cannarsa and R. Guglielmi,
Indirect stabilization of weakly coupled systems with hybrid boundary conditions, Math. Control Relat. Fields, 1 (2011), 413-436.
doi: 10.3934/mcrf.2011.1.413. |
[4] |
F. Alabau-Boussouira and M. Léautaud,
Indirect stabilization of locally coupled wave-type systems, ESAIM Control Optim. Calc. Var., 18 (2012), 548-582.
doi: 10.1051/cocv/2011106. |
[5] |
F. Alabau-Boussouira and M. Léautaud,
Indirect controllability of locally coupled wave-type systems and applications, J. Math. Pures Appl. (9), 99 (2013), 544-576.
doi: 10.1016/j.matpur.2012.09.012. |
[6] |
W. Arendt and C.J.K. Batty,
Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc., 306 (1988), 837-852.
doi: 10.1090/S0002-9947-1988-0933321-3. |
[7] |
G. Avalos and F. Bucci,
Rational rates of uniform decay for strong solutions to a fluid-structure PDE system, J. Differential Equations, 258 (2015), 4398-4423.
doi: 10.1016/j.jde.2015.01.037. |
[8] |
G. Avalos, I. Lasiecka and R. Triggiani,
Beyond lack of compactness and lack of stability of a coupled parabolic-hyperbolic fluid-structure system, In Optimal control of coupled systems of partial differential equations, volume 158 of Internat. Ser. Numer. Math, (2009), 1-33.
doi: 10.1007/978-3-7643-8923-9_1. |
[9] |
G. Avalos, I. Lasiecka and R. Triggiani,
Heat-wave interaction in 2-3 dimensions: Optimal rational decay rate, J. Math. Anal. Appl., 437 (2016), 782-815.
doi: 10.1016/j.jmaa.2015.12.051. |
[10] |
G. Avalos and R. Triggiani,
Rational decay rates for a PDE heat-structure interaction: A frequency domain approach, Evol. Equ. Control Theory, 2 (2013), 233-253.
doi: 10.3934/eect.2013.2.233. |
[11] |
A. Bátkai, K.-J. Engel, J. Prüss and R. Schnaubelt,
Polynomial stability of operator semigroups, Math. Nachr., 279 (2006), 1425-1440.
doi: 10.1002/mana.200410429. |
[12] |
C. J.K. Batty and T. Duyckaerts,
Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., 8 (2008), 765-780.
doi: 10.1007/s00028-008-0424-1. |
[13] |
A. Borichev and Y. Tomilov,
Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478.
doi: 10.1007/s00208-009-0439-0. |
[14] |
R. Dáger and E. Zuazua,
Wave Propagation, Observation and Control in 1-d Flexible Multi-structures, volume 50 of Mathématiques & Applications (Berlin) [Mathematics & Applications], Springer-Verlag, Berlin, 2006.
doi: 10.1007/3-540-37726-3. |
[15] |
B. Dehman, J. Le Rousseau and M. Léautaud,
Controllability of two coupled wave equations on a compact manifold, Arch. Ration. Mech. Anal., 211 (2014), 113-187.
doi: 10.1007/s00205-013-0670-4. |
[16] |
M. Eller, I. Lasiecka and R. Triggiani, Simultaneous exact/approximate boundary controllability of thermo-elastic plates with variable transmission coefficient, In Shape optimization and optimal design (Cambridge, 1999), volume 216 of Lecture Notes in Pure and Appl. Math. , pages 109-230, Dekker, New York, 2001. |
[17] |
R. Gulliver, I. Lasiecka, W. Littman and R. Triggiani,
The case for differential geometry in the control of single and coupled PDEs: the structural acoustic chamber, In Geometric methods in inverse problems and PDE control, volume 137 of IMA Vol. Math., (2004), 73-181.
doi: 10.1007/978-1-4684-9375-7_5. |
[18] |
V. Komornik, Exact Controllability and Stabilization RAM: Research in Applied Mathematics. Masson, Paris, 1994. The multiplier method. |
[19] |
J. Lagnese and J. -L. Lions,
Modelling Analysis and Control of Thin Plates volume 6 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics], Masson, Paris, 1988. |
[20] |
G. Lebeau, Équation des ondes amorties, In Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), volume 19 of Math. Phys. Stud. , pages 73-109, Kluwer Acad. Publ. , Dordrecht, 1996. |
[21] |
Yu. I. Lyubich and Quôc Phóng Vû,
Asymptotic stability of linear differential equations in Banach spaces, Studia Math., 88 (1988), 37-42.
|
[22] |
D.L. Russell,
A general framework for the study of indirect damping mechanisms in elastic systems, J. Math. Anal. Appl., 173 (1993), 339-358.
doi: 10.1006/jmaa.1993.1071. |
[23] |
L. Tebou,
Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms, Math. Control Relat. Fields, 2 (2012), 45-60.
doi: 10.3934/mcrf.2012.2.45. |
[24] |
X. Zhang and E. Zuazua,
Asymptotic behavior of a hyperbolic-parabolic coupled system arising in fluid-structure interaction, in Free Boundary Problems, Internat. Ser. Numer. Math.,
154, Birkhäuser, Basel, (2007), 445-455.
doi: 10.1007/978-3-7643-7719-9_43. |
show all references
References:
[1] |
F. Alabau,
Stabilisation frontiére indirecte de systémes faiblement couplés, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 1015-1020.
doi: 10.1016/S0764-4442(99)80316-4. |
[2] |
F. Alabau, P. Cannarsa and V. Komornik,
Indirect internal stabilization of weakly coupled evolution equations, J. Evol. Equ., 2 (2002), 127-150.
doi: 10.1007/s00028-002-8083-0. |
[3] |
F. Alabau-Boussouira, P. Cannarsa and R. Guglielmi,
Indirect stabilization of weakly coupled systems with hybrid boundary conditions, Math. Control Relat. Fields, 1 (2011), 413-436.
doi: 10.3934/mcrf.2011.1.413. |
[4] |
F. Alabau-Boussouira and M. Léautaud,
Indirect stabilization of locally coupled wave-type systems, ESAIM Control Optim. Calc. Var., 18 (2012), 548-582.
doi: 10.1051/cocv/2011106. |
[5] |
F. Alabau-Boussouira and M. Léautaud,
Indirect controllability of locally coupled wave-type systems and applications, J. Math. Pures Appl. (9), 99 (2013), 544-576.
doi: 10.1016/j.matpur.2012.09.012. |
[6] |
W. Arendt and C.J.K. Batty,
Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc., 306 (1988), 837-852.
doi: 10.1090/S0002-9947-1988-0933321-3. |
[7] |
G. Avalos and F. Bucci,
Rational rates of uniform decay for strong solutions to a fluid-structure PDE system, J. Differential Equations, 258 (2015), 4398-4423.
doi: 10.1016/j.jde.2015.01.037. |
[8] |
G. Avalos, I. Lasiecka and R. Triggiani,
Beyond lack of compactness and lack of stability of a coupled parabolic-hyperbolic fluid-structure system, In Optimal control of coupled systems of partial differential equations, volume 158 of Internat. Ser. Numer. Math, (2009), 1-33.
doi: 10.1007/978-3-7643-8923-9_1. |
[9] |
G. Avalos, I. Lasiecka and R. Triggiani,
Heat-wave interaction in 2-3 dimensions: Optimal rational decay rate, J. Math. Anal. Appl., 437 (2016), 782-815.
doi: 10.1016/j.jmaa.2015.12.051. |
[10] |
G. Avalos and R. Triggiani,
Rational decay rates for a PDE heat-structure interaction: A frequency domain approach, Evol. Equ. Control Theory, 2 (2013), 233-253.
doi: 10.3934/eect.2013.2.233. |
[11] |
A. Bátkai, K.-J. Engel, J. Prüss and R. Schnaubelt,
Polynomial stability of operator semigroups, Math. Nachr., 279 (2006), 1425-1440.
doi: 10.1002/mana.200410429. |
[12] |
C. J.K. Batty and T. Duyckaerts,
Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., 8 (2008), 765-780.
doi: 10.1007/s00028-008-0424-1. |
[13] |
A. Borichev and Y. Tomilov,
Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478.
doi: 10.1007/s00208-009-0439-0. |
[14] |
R. Dáger and E. Zuazua,
Wave Propagation, Observation and Control in 1-d Flexible Multi-structures, volume 50 of Mathématiques & Applications (Berlin) [Mathematics & Applications], Springer-Verlag, Berlin, 2006.
doi: 10.1007/3-540-37726-3. |
[15] |
B. Dehman, J. Le Rousseau and M. Léautaud,
Controllability of two coupled wave equations on a compact manifold, Arch. Ration. Mech. Anal., 211 (2014), 113-187.
doi: 10.1007/s00205-013-0670-4. |
[16] |
M. Eller, I. Lasiecka and R. Triggiani, Simultaneous exact/approximate boundary controllability of thermo-elastic plates with variable transmission coefficient, In Shape optimization and optimal design (Cambridge, 1999), volume 216 of Lecture Notes in Pure and Appl. Math. , pages 109-230, Dekker, New York, 2001. |
[17] |
R. Gulliver, I. Lasiecka, W. Littman and R. Triggiani,
The case for differential geometry in the control of single and coupled PDEs: the structural acoustic chamber, In Geometric methods in inverse problems and PDE control, volume 137 of IMA Vol. Math., (2004), 73-181.
doi: 10.1007/978-1-4684-9375-7_5. |
[18] |
V. Komornik, Exact Controllability and Stabilization RAM: Research in Applied Mathematics. Masson, Paris, 1994. The multiplier method. |
[19] |
J. Lagnese and J. -L. Lions,
Modelling Analysis and Control of Thin Plates volume 6 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics], Masson, Paris, 1988. |
[20] |
G. Lebeau, Équation des ondes amorties, In Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), volume 19 of Math. Phys. Stud. , pages 73-109, Kluwer Acad. Publ. , Dordrecht, 1996. |
[21] |
Yu. I. Lyubich and Quôc Phóng Vû,
Asymptotic stability of linear differential equations in Banach spaces, Studia Math., 88 (1988), 37-42.
|
[22] |
D.L. Russell,
A general framework for the study of indirect damping mechanisms in elastic systems, J. Math. Anal. Appl., 173 (1993), 339-358.
doi: 10.1006/jmaa.1993.1071. |
[23] |
L. Tebou,
Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms, Math. Control Relat. Fields, 2 (2012), 45-60.
doi: 10.3934/mcrf.2012.2.45. |
[24] |
X. Zhang and E. Zuazua,
Asymptotic behavior of a hyperbolic-parabolic coupled system arising in fluid-structure interaction, in Free Boundary Problems, Internat. Ser. Numer. Math.,
154, Birkhäuser, Basel, (2007), 445-455.
doi: 10.1007/978-3-7643-7719-9_43. |
[1] |
Ayechi Radhia, Khenissi Moez. Local indirect stabilization of same coupled evolution systems through resolvent estimates. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1573-1597. doi: 10.3934/dcdss.2022099 |
[2] |
Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3641-3657. doi: 10.3934/dcdss.2020434 |
[3] |
Fritz Colonius, Guilherme Mazanti. Decay rates for stabilization of linear continuous-time systems with random switching. Mathematical Control and Related Fields, 2019, 9 (1) : 39-58. doi: 10.3934/mcrf.2019002 |
[4] |
Fatiha Alabau-Boussouira, Piermarco Cannarsa, Roberto Guglielmi. Indirect stabilization of weakly coupled systems with hybrid boundary conditions. Mathematical Control and Related Fields, 2011, 1 (4) : 413-436. doi: 10.3934/mcrf.2011.1.413 |
[5] |
Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063 |
[6] |
Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control and Related Fields, 2022, 12 (2) : 405-420. doi: 10.3934/mcrf.2021027 |
[7] |
Kais Ammari, Eduard Feireisl, Serge Nicaise. Polynomial stabilization of some dissipative hyperbolic systems. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4371-4388. doi: 10.3934/dcds.2014.34.4371 |
[8] |
Serge Nicaise. Control and stabilization of 2 × 2 hyperbolic systems on graphs. Mathematical Control and Related Fields, 2017, 7 (1) : 53-72. doi: 10.3934/mcrf.2017004 |
[9] |
Thomas I. Seidman, Houshi Li. A note on stabilization with saturating feedback. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 319-328. doi: 10.3934/dcds.2001.7.319 |
[10] |
Elena-Alexandra Melnig. Internal feedback stabilization for parabolic systems coupled in zero or first order terms. Evolution Equations and Control Theory, 2021, 10 (2) : 333-351. doi: 10.3934/eect.2020069 |
[11] |
Ruth F. Curtain, George Weiss. Strong stabilization of (almost) impedance passive systems by static output feedback. Mathematical Control and Related Fields, 2019, 9 (4) : 643-671. doi: 10.3934/mcrf.2019045 |
[12] |
Cătălin-George Lefter, Elena-Alexandra Melnig. Feedback stabilization with one simultaneous control for systems of parabolic equations. Mathematical Control and Related Fields, 2018, 8 (3&4) : 777-787. doi: 10.3934/mcrf.2018034 |
[13] |
Ionuţ Munteanu. Boundary stabilization of non-diagonal systems by proportional feedback forms. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3113-3128. doi: 10.3934/cpaa.2021098 |
[14] |
Fabio S. Priuli. State constrained patchy feedback stabilization. Mathematical Control and Related Fields, 2015, 5 (1) : 141-163. doi: 10.3934/mcrf.2015.5.141 |
[15] |
Gonzalo Robledo. Feedback stabilization for a chemostat with delayed output. Mathematical Biosciences & Engineering, 2009, 6 (3) : 629-647. doi: 10.3934/mbe.2009.6.629 |
[16] |
Tobias Breiten, Karl Kunisch. Boundary feedback stabilization of the monodomain equations. Mathematical Control and Related Fields, 2017, 7 (3) : 369-391. doi: 10.3934/mcrf.2017013 |
[17] |
Shui-Hung Hou, Qing-Xu Yan. Nonlinear locally distributed feedback stabilization. Journal of Industrial and Management Optimization, 2008, 4 (1) : 67-79. doi: 10.3934/jimo.2008.4.67 |
[18] |
Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control and Related Fields, 2013, 3 (2) : 121-142. doi: 10.3934/mcrf.2013.3.121 |
[19] |
Kaïs Ammari, Mohamed Jellouli, Michel Mehrenberger. Feedback stabilization of a coupled string-beam system. Networks and Heterogeneous Media, 2009, 4 (1) : 19-34. doi: 10.3934/nhm.2009.4.19 |
[20] |
Elena Braverman, Alexandra Rodkina. Stabilization of difference equations with noisy proportional feedback control. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2067-2088. doi: 10.3934/dcdsb.2017085 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]