March  2017, 6(1): 93-109. doi: 10.3934/eect.2017006

Sufficiency and mixed type duality for multiobjective variational control problems involving α-V-univexity

1. 

Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee-247 667, India

2. 

Department of Applied Mathematics, Indian School of Mines , Dhanbad-826 004, Jharkhand, India

* Corresponding author: Sarita Sharma

Indian School of Mines has now been renamed as Indian Institute of Technology (Indian School of Mines)

Received  July 2015 Revised  July 2016 Published  December 2016

In this paper, we focus our study on a multiobjective variational control problem and establish sufficient optimality conditions under the assumptions of α-V-univex function. Furthermore, mixed type duality results are also discussed under the aforesaid assumption in order to relate the primal and dual problems. Examples are given to show the existence of α-V-univex function and to elucidate duality result.

Citation: Sarita Sharma, Anurag Jayswal, Sarita Choudhury. Sufficiency and mixed type duality for multiobjective variational control problems involving α-V-univexity. Evolution Equations & Control Theory, 2017, 6 (1) : 93-109. doi: 10.3934/eect.2017006
References:
[1]

I. Ahmad and T. R. Gulati, Mixed type duality for multiobjective variational problems with generalized (F, ρ)-convexity, J. Math. Anal. Appl., 306 (2005), 669-683.  doi: 10.1016/j.jmaa.2004.10.019.  Google Scholar

[2]

I. Ahmad and S. Sharma, Sufficiency and duality for multiobjective variational control problems with generalized (F, α, ρ, θ)-V-convexity, Nonlinear Anal., 72 (2010), 2564-2579.  doi: 10.1016/j.na.2009.11.005.  Google Scholar

[3]

C. R. BectorS. K. Suneja and S. Gupta, Univex functions and univex nonlinear programming, Proc. Admin. Sci. Asso. Canada, (1992), 115-124.  doi: 10.1007/978-3-642-46802-5_1.  Google Scholar

[4]

B. D. Craven, Mathematical Programming and Control Theory Chapman & Hall, London, 1978.  Google Scholar

[5]

D. Bhatia and P. Kumar, Multiobjective control problem with generalized invexity, J. Math. Anal. Appl., 189 (1995), 676-692.  doi: 10.1006/jmaa.1995.1045.  Google Scholar

[6]

T. R. GulatiI. Husain and A. Ahmed, Optimality conditions and duality for multiobjective control problems, J. Appl. Anal., 11 (2005), 225-245.  doi: 10.1515/JAA.2005.225.  Google Scholar

[7]

M. A. Hanson, Bounds for functionally convex optimal control problems, J. Math. Anal. Appl., 8 (1964), 84-89.  doi: 10.1016/0022-247X(64)90086-1.  Google Scholar

[8]

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545-550.  doi: 10.1016/0022-247X(81)90123-2.  Google Scholar

[9]

M. A. Hanson and B. Mond, Further generalizations of convexity in mathematical programming, J. Inform. Optim. Sci., 3 (1982), 25-32.  doi: 10.1080/02522667.1982.10698716.  Google Scholar

[10]

N. Kailey and S. K. Gupta, Duality for a class of symmetric nondifferentiable multiobjective fractional variational problems with generalized (F, α, ρ, d)-convexity, Math. Comput. Model., 57 (2013), 1453-1465.  doi: 10.1016/j.mcm.2012.12.007.  Google Scholar

[11]

K. Khazafi and N. Rueda, Multiobjective variational programming under generalized type-Ⅰ univexity, J. Optim. Theory Appl., 142 (2009), 363-376.  doi: 10.1007/s10957-009-9526-3.  Google Scholar

[12]

K. KhazafiN. Rueda and P. Enflo, Sufficiency and duality for multiobjective control problems under generalized (B, ρ)-type Ⅰ functions, J. Global Optim., 46 (2010), 111-132.  doi: 10.1007/s10898-009-9412-4.  Google Scholar

[13]

Z. A. LiangH. X. Huang and P. M. Pardalos, Optimality conditions and duality for a class of nonlinear fractional programming problems, J. Optim. Theory Appl., 110 (2001), 611-619.  doi: 10.1023/A:1017540412396.  Google Scholar

[14]

Z. A. LiangH. X. Huang and P. M. Pardalos, Efficient conditions and duality for a class of multiobjective programming problems, J. Global Optim., 27 (2003), 447-471.  doi: 10.1023/A:1026041403408.  Google Scholar

[15]

B. Mond and I. Smart, Duality and sufficiency in control problems with invexity, J. Math. Anal. Appl., 136 (1988), 325-333.  doi: 10.1016/0022-247X(88)90135-7.  Google Scholar

[16]

C. Nahak and S. Nanda, On efficiency and duality for multiobjective variational control problems with (F, $ρ$)-convexity, J. Math. Anal. Appl., 209 (1997), 415-434.  doi: 10.1006/jmaa.1997.5332.  Google Scholar

[17]

C. Nahak and S. Nanda, Sufficient optimality criteria and duality for multiobjective variational control problems with $V$-invexity, Nonlinear Anal., 66 (2007), 1513-1525.  doi: 10.1016/j.na.2006.02.006.  Google Scholar

[18]

M. A. Noor, On generalized preinvex functions and monotonicities, J. Inequal. Pure Appl. Math. \textbf{5} (2004), Article 110, 9 pp. (electronic).  Google Scholar

[19]

V. PredaI. M. MinasianM. Beldiman and A. M. Stancu, Generalized V-univexity type Ⅰ for multiobjective programming with $n$-set functions, J. Global Optim., 44 (2009), 131-148.  doi: 10.1007/s10898-008-9315-9.  Google Scholar

[20]

R. T. Rockafellar, Conjugate convex functions in optimal control and the calculus of variations, J. Math. Anal. Appl., 32 (1970), 174-222.  doi: 10.1016/0022-247X(70)90324-0.  Google Scholar

[21]

R. T. Rockafellar, Convex integral functionals and duality, in Contributions to Nonlinear Functional Analysis (E. Zarantonello, ed.), Academic Press, (1971), 215-236.   Google Scholar

[22]

S. Sharma, Duality for higher order variational control programming problems Int. Trans. Oper. Res. (2015). doi: 10.1111/itor.12192.  Google Scholar

[23]

Z. Xu, Mixed type duality in multiobjective programming problems, J. Math. Anal. Appl., 198 (1996), 621-635.  doi: 10.1006/jmaa.1996.0103.  Google Scholar

show all references

References:
[1]

I. Ahmad and T. R. Gulati, Mixed type duality for multiobjective variational problems with generalized (F, ρ)-convexity, J. Math. Anal. Appl., 306 (2005), 669-683.  doi: 10.1016/j.jmaa.2004.10.019.  Google Scholar

[2]

I. Ahmad and S. Sharma, Sufficiency and duality for multiobjective variational control problems with generalized (F, α, ρ, θ)-V-convexity, Nonlinear Anal., 72 (2010), 2564-2579.  doi: 10.1016/j.na.2009.11.005.  Google Scholar

[3]

C. R. BectorS. K. Suneja and S. Gupta, Univex functions and univex nonlinear programming, Proc. Admin. Sci. Asso. Canada, (1992), 115-124.  doi: 10.1007/978-3-642-46802-5_1.  Google Scholar

[4]

B. D. Craven, Mathematical Programming and Control Theory Chapman & Hall, London, 1978.  Google Scholar

[5]

D. Bhatia and P. Kumar, Multiobjective control problem with generalized invexity, J. Math. Anal. Appl., 189 (1995), 676-692.  doi: 10.1006/jmaa.1995.1045.  Google Scholar

[6]

T. R. GulatiI. Husain and A. Ahmed, Optimality conditions and duality for multiobjective control problems, J. Appl. Anal., 11 (2005), 225-245.  doi: 10.1515/JAA.2005.225.  Google Scholar

[7]

M. A. Hanson, Bounds for functionally convex optimal control problems, J. Math. Anal. Appl., 8 (1964), 84-89.  doi: 10.1016/0022-247X(64)90086-1.  Google Scholar

[8]

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545-550.  doi: 10.1016/0022-247X(81)90123-2.  Google Scholar

[9]

M. A. Hanson and B. Mond, Further generalizations of convexity in mathematical programming, J. Inform. Optim. Sci., 3 (1982), 25-32.  doi: 10.1080/02522667.1982.10698716.  Google Scholar

[10]

N. Kailey and S. K. Gupta, Duality for a class of symmetric nondifferentiable multiobjective fractional variational problems with generalized (F, α, ρ, d)-convexity, Math. Comput. Model., 57 (2013), 1453-1465.  doi: 10.1016/j.mcm.2012.12.007.  Google Scholar

[11]

K. Khazafi and N. Rueda, Multiobjective variational programming under generalized type-Ⅰ univexity, J. Optim. Theory Appl., 142 (2009), 363-376.  doi: 10.1007/s10957-009-9526-3.  Google Scholar

[12]

K. KhazafiN. Rueda and P. Enflo, Sufficiency and duality for multiobjective control problems under generalized (B, ρ)-type Ⅰ functions, J. Global Optim., 46 (2010), 111-132.  doi: 10.1007/s10898-009-9412-4.  Google Scholar

[13]

Z. A. LiangH. X. Huang and P. M. Pardalos, Optimality conditions and duality for a class of nonlinear fractional programming problems, J. Optim. Theory Appl., 110 (2001), 611-619.  doi: 10.1023/A:1017540412396.  Google Scholar

[14]

Z. A. LiangH. X. Huang and P. M. Pardalos, Efficient conditions and duality for a class of multiobjective programming problems, J. Global Optim., 27 (2003), 447-471.  doi: 10.1023/A:1026041403408.  Google Scholar

[15]

B. Mond and I. Smart, Duality and sufficiency in control problems with invexity, J. Math. Anal. Appl., 136 (1988), 325-333.  doi: 10.1016/0022-247X(88)90135-7.  Google Scholar

[16]

C. Nahak and S. Nanda, On efficiency and duality for multiobjective variational control problems with (F, $ρ$)-convexity, J. Math. Anal. Appl., 209 (1997), 415-434.  doi: 10.1006/jmaa.1997.5332.  Google Scholar

[17]

C. Nahak and S. Nanda, Sufficient optimality criteria and duality for multiobjective variational control problems with $V$-invexity, Nonlinear Anal., 66 (2007), 1513-1525.  doi: 10.1016/j.na.2006.02.006.  Google Scholar

[18]

M. A. Noor, On generalized preinvex functions and monotonicities, J. Inequal. Pure Appl. Math. \textbf{5} (2004), Article 110, 9 pp. (electronic).  Google Scholar

[19]

V. PredaI. M. MinasianM. Beldiman and A. M. Stancu, Generalized V-univexity type Ⅰ for multiobjective programming with $n$-set functions, J. Global Optim., 44 (2009), 131-148.  doi: 10.1007/s10898-008-9315-9.  Google Scholar

[20]

R. T. Rockafellar, Conjugate convex functions in optimal control and the calculus of variations, J. Math. Anal. Appl., 32 (1970), 174-222.  doi: 10.1016/0022-247X(70)90324-0.  Google Scholar

[21]

R. T. Rockafellar, Convex integral functionals and duality, in Contributions to Nonlinear Functional Analysis (E. Zarantonello, ed.), Academic Press, (1971), 215-236.   Google Scholar

[22]

S. Sharma, Duality for higher order variational control programming problems Int. Trans. Oper. Res. (2015). doi: 10.1111/itor.12192.  Google Scholar

[23]

Z. Xu, Mixed type duality in multiobjective programming problems, J. Math. Anal. Appl., 198 (1996), 621-635.  doi: 10.1006/jmaa.1996.0103.  Google Scholar

[1]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[2]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[3]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[4]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[5]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[6]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[7]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[8]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[9]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[10]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[11]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[12]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[13]

Ravi Anand, Dibyendu Roy, Santanu Sarkar. Some results on lightweight stream ciphers Fountain v1 & Lizard. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020128

[14]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[15]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[16]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[17]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[18]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[19]

Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285

[20]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (60)
  • HTML views (142)
  • Cited by (0)

Other articles
by authors

[Back to Top]