\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The analyticity and exponential decay of a Stokes-wave coupling system with viscoelastic damping in the variational framework

Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • In this paper, we study a fluid-structure interaction model of Stokes-wave equation coupling system with Kelvin-Voigt type of damping. We show that this damped coupling system generates an analyticity semigroup and thus the semigroup solution, which also satisfies variational framework of weak solution, decays to zero at exponential rate.

    Mathematics Subject Classification: Primary: 35M10, 35B35; Secondary: 35A01.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  THE FLUID–STRUCTURE INTERACTION

  • [1] G. Avalos and R. Triggiani, The coupled PDE system arising in fluid-structure interaction. Part Ⅰ: Explicit semigroup generator and its spectral properties, AMS Contemporary Mathematics, Fluids and Waves, 440 (2007), 15-55.  doi: 10.1090/conm/440/08475.
    [2] G. Avalos, I. Lasiecka and R. Triggiani, Higher regularity of a coupled parabolic-hyperbolic fluid-structure interactive system, Georgian Math. J. , Special issue dedicated to the memory of J. L. Lions, 15 (2008), 403-437.
    [3] G. Avalos and R. Triggiani, Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface, Discr. Cont. Dynam. Sys., 22 (2008), 817-833.  doi: 10.3934/dcds.2008.22.817.
    [4] G. Avalos and R. Triggiani, Boundary feedback stabilization of a coupled parabolic-hyperbolic Stokes-Lamé PDE system, J. Evol. Eqns., 9 (2009), 341-370.  doi: 10.1007/s00028-009-0015-9.
    [5] G. Avalos and R. Triggiani, Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability, Evolution Equations and Control Theory, 2 (2013), 563-598.  doi: 10.3934/eect.2013.2.563.
    [6] W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Transactions of the American Mathematical Society, 306 (1988), 837-852.  doi: 10.1090/S0002-9947-1988-0933321-3.
    [7] V. Barbu, Nonlinear Semigroup and Differential Equations in Banach Spaces, Springer, 1976.
    [8] V. BarbuZ. GrujicI. Lasiecka and A. Tuffaha, Smoothness of weak solutions to a nonlinear fluid-structure interaction model, Indiana Univ. Math. J., 57 (2008), 1773-1207.  doi: 10.1512/iumj.2008.57.3284.
    [9] V. BarbuZ. GrujicI. Lasiecka and A. Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model, Contemporary Mathematics, 440 (2007), 55-82.  doi: 10.1090/conm/440/08476.
    [10] S. CanicB. Muha and M. Bukac, Stability of the Kinematically Coupled $β$ -Scheme for fluid-structure interaction problems in hemodynamics, International Journal for Numerical Analysis and Modeling, 12 (2015), 54-80. 
    [11] S. Chen and R. Triggiani, Proof of the extensions of two conjectures on structural damping for elastic system, Pacific Journal of Mathematics, 36 (1989), 15-55.  doi: 10.2140/pjm.1989.136.15.
    [12] S. Chen and R. Triggiani, Gevrey class semigroups arising from elastic systems with gentle dissipation: the case $ 0 < \alpha < \frac{1}{2}$, Proc. Amer. Math. Soc., 110 (1990), 401-415.  doi: 10.2307/2048084.
    [13] C. ClasonB. Kaltenbacher and S. Veljović, Boundary optimal control of the Westervelt and the Kuznetsov equation, J. Math. Anal. Appl., 356 (2009), 738-751.  doi: 10.1016/j.jmaa.2009.03.043.
    [14] D. Coutand and S. Shkoller, Motion of an elastic inside an incompressible viscous fluid, Arch. Rational Mech. Anal., 176 (2005), 25-102.  doi: 10.1016/j.jmaa.2009.03.043.
    [15] R. Denk, M. Hieber and J. Prüss, $\mathcal{R}$ -boundedness, Fourier multipliers and problems of elliptic and parabolic type Memoirs Amer. Math. Soc. 166 (2003), viii+114 pp. doi: 10.1090/memo/0788.
    [16] W. DeschM. Hieber and J. Pruss, $L_p$ theory of the Stokes equation in a half space, J. Evolution Eqns, 1 (2001), 115-142.  doi: 10.1007/PL00001362.
    [17] W. Desch and W. Schappacher, Some perturbation results for analytic semigroups, Mathematische Annalen, 281 (1988), 157-162.  doi: 10.1007/BF01449222.
    [18] Q. DuM. D. GunzburgerL. S. Hou and J. Lee, Analysis of a linear-fluid structure interaction model, Discr. Dynam. Sys., 9 (2003), 633-650.  doi: 10.3934/dcds.2003.9.633.
    [19] Y. Giga, Analyticity of the semigroup generated by the Stokes operator in $L_r$ space, Mathematische Zeiscrift, 178 (1981), 297-329.  doi: 10.1007/BF01214869.
    [20] Y. Giga, Weak and strong solutions of the Navier-Stokes initial value problem, Publ. RIMS, Tokyo Univ., 19 (1983), 887-910.  doi: 10.2977/prims/1195182014.
    [21] M. Hieber and J. Prüss, Heat kernels and maximal $L^p-L^q$ estimates for parabolic evolution equations, Comm. Partial Differential Equations, 22 (1997), 1647-1669.  doi: 10.1080/03605309708821314.
    [22] B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation, Discr. Cont. Dynam. Sys., Series S, 2 (2009), 503-523.  doi: 10.3934/dcdss.2009.2.503.
    [23] B. Kaltenbacher, Boundary observability and stabilization for Westervelt type wave equations, Appl. Math. & Opti., 62 (2010), 381-410.  doi: 10.1007/s00245-010-9108-7.
    [24] I. KukavicaA. Tuffaha and M. Ziane, Strong solutions to a nonlinear fluid structure interaction system, J. Diff. Eq., 247 (2009), 1452-1478.  doi: 10.1016/j.jde.2009.06.005.
    [25] I. KukavicaA. Tuffaha and M. Ziane, Strong solutions to a nonlinear fluid structure interaction system, Adv. Diff. Eq., 15 (2010), 231-254.  doi: 10.1016/j.jde.2009.06.005.
    [26] I. Lasiecka, Mathematical Control Theory of Coupled PDEs SIAM, 2002. doi: 10.1137/1.9780898717099.
    [27] I. Lasiecka and Y. Lu, Asymptotic stability of finite energy in Navier Stokes-elastic wave interaction, Semigroup Forum, 82 (2011), 61-82.  doi: 10.1007/s00233-010-9281-7.
    [28] I. Lasiecka and Y. Lu, Interface feedback control stabilization to a nonlinear fluid-structure interaction model, Nonlinear Anal., 75 (2012), 1449-1460.  doi: 10.1016/j.na.2011.04.018.
    [29] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories, I: Abstract Parabolic Systems, Encyclopedia of Mathematics and its Applications, 74 Cambridge University Press, 2000.
    [30] I. Lasiecka and R. Triggiani, Heat-structure interaction with viscoelastic damping: Analyticity with sharp analytic sector, exponential decay, fractional powers, Communications on Pure and Applied Analysis, 15 (2016).  doi: 10.3934/cpaa.2016001.
    [31] K. Liu and Z. Liu, Analyticity and differentiability of semigroups associated with elastic systems with damping and Gyroscopitc forces, J. Diff. Eq., 141 (1997), 340-355.  doi: 10.1006/jdeq.1997.3331.
    [32] Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems Chapman & Hall/ CRC Research Notes in Mathematics, 1999.
    [33] S. Meyer and M. Wilke, Optimal regularity and long-time behavior of solutions for the Westervelt equation, Appl. Math. and Opti., 64 (2011), 257-271.  doi: 10.1007/s00245-011-9138-9.
    [34] B. Muha and S. Canic, Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls, Archives for Rational Mechanics and Analysis, 207 (2013), 919-296871.  doi: 10.1007/s00205-012-0585-5.
    [35] B. Muha and S. Canic, Existence of a solution to a fluid-multi-layered-structure interaction problem, Journal of Differential Equations, 256 (2014), 658-706.  doi: 10.1016/j.jde.2013.09.016.
    [36] N. $\ddot{O}$ zkaya, M. Nordin, D. Goldsheyder and D. Leger, Fundamentals of Biomechanics-Equilibrium, Motion, and Deformation Springer-Verlag, New York, 2012.
    [37] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations Springer Verlag, 1983. doi: 10.1007/978-1-4612-5561-1.
    [38] J. Pruss, On the spectrum of $C_0$ semigroup, Transactions of American Mathematics Society, 284 (1984), 847-857.  doi: 10.2307/1999112.
    [39] G. Simonett and M. Wilke, Well-posedness and long-time behaviour for the Westervelt equation with absorbing boundary conditions of order zero, To appear in in J. of Evol. Eqns.
    [40] R. Triggiani, A heat-viscoelastic structure interaction model with Neumann or Dirichlet boundary control at the interface: optimal regularity, control theoretic implications, Applied Mathematics and Optimization, special issue in memory of A. V. Balakrishnan, 73(3) (2016), 571-594. doi: 10.1007/s00245-016-9348-2.
    [41] X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system in fluid-structure interaction, Arch. Rat. Mech. Anal., 184 (2007), 49-120.  doi: 10.1007/s00205-006-0020-x.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(364) PDF downloads(212) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return