In this paper we study the one-dimensional logarithmic Schrödin-\break ger equation perturbed by an attractive $δ^{\prime}$-interaction
$i{\partial _t}u + \partial _x^2u + {\rm{ }}{\gamma ^\prime }(x)u + u{\mkern 1mu} {\rm{Log|}}u|2 = 0,(x,t) \in \mathbb{R} \times \mathbb{R} ,$
where $γ>0$. We establish the existence and uniqueness of the solutions of the associated Cauchy problem in a suitable functional framework. In the attractive $δ^{\prime}$-interaction case, the set of the ground state is completely determined. More precisely: if $0 < γ≤ 2$, then there is a single ground state and it is an odd function; if $γ>2$, then there exist two non-symmetric ground states. Finally, we show that the ground states are orbitally stable via a variational approach.
Citation: |
R. Adami and D. Noja, Existence of dynamics for a 1-d NLS equation perturbed with a generalized point defect J. Phys. A Math. Theor. 42 (2009), 495302, 19pp.
doi: 10.1088/1751-8113/42/49/495302.![]() ![]() ![]() |
|
R. Adami
and D. Noja
, Nonlinearity-defect interaction: Symmetry breaking bifurcation in a NLS with δ' impurity, Nanosystems, 2 (2011)
, 5-19.
![]() |
|
R. Adami
and D. Noja
, Stability and symmetry-breaking bifurcation for the ground states of a NLS with a δ' interaction, Comm. Math. Phys., 318 (2013)
, 247-289.
doi: 10.1007/s00220-012-1597-6.![]() ![]() ![]() |
|
R. Adami
and D. Noja
, Exactly solvable models and bifurcations: The case of the cubic NLS with a δ or a δ' interaction in dimension one, Math. Model. Nat. Phenom., 9 (2014)
, 1-16.
doi: 10.1051/mmnp/20149501.![]() ![]() ![]() |
|
R. Adami
, D. Noja
and N. Visciglia
, Constrained energy minimization and ground states for NLS with point defects, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013)
, 1155-1188.
doi: 10.3934/dcdsb.2013.18.1155.![]() ![]() ![]() |
|
S. Albeverio, F. Gesztesy, R. H∅egh-Krohn and H. Holden,
Solvable Models in Quantum Mechanics Springer-Verlag, New York, 1988.
doi: 10.1007/978-3-642-88201-2.![]() ![]() ![]() |
|
J. Angulo and A. H. Ardila, Stability of standing waves for logarithmic Schrödinger equation with attractive delta potential, Indiana Univ. Math. J., to appear.
![]() |
|
A.H. Ardila
, Orbital stability of gausson solutions to logarithmic Schrödinger equations, Electron. J. Differential Equations, 335 (2016)
, 1-9.
![]() |
|
I. Bialynicki-Birula
and J. Mycielski
, Nonlinear wave mechanics, Ann. Phys, 100 (1976)
, 62-93.
doi: 10.1016/0003-4916(76)90057-9.![]() ![]() ![]() |
|
H. Brézis
and E. Lieb
, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983)
, 486-490.
doi: 10.2307/2044999.![]() ![]() ![]() |
|
T. Cazenave
, Stable solutions of the logarithmic Schrödinger equation, Nonlinear. Anal., T.M.A., 7 (1983)
, 1127-1140.
doi: 10.1016/0362-546X(83)90022-6.![]() ![]() ![]() |
|
T. Cazenave,
Semilinear Schrödinger Equations Courant Lecture Notes in Mathematics, 10, American Mathematical Society, Courant Institute of Mathematical Sciences, 2003.
doi: 10.1090/cln/010.![]() ![]() ![]() |
|
T. Cazenave
and P. Lions
, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982)
, 549-561.
doi: 10.1007/BF01403504.![]() ![]() ![]() |
|
R. Fukuizumi
and L. Jeanjean
, Stability of standing waves for a nonlinear Schrödinger equation with a repulsive {D}irac delta potential, Discrete Contin. Dyn. Syst., 21 (2008)
, 121-136.
doi: 10.3934/dcds.2008.21.121.![]() ![]() ![]() |
|
R. Fukuizumi
, M. Ohta
and T. Ozawa
, Nonlinear Schrödinger equation with a point defect, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008)
, 837-845.
doi: 10.1016/j.anihpc.2007.03.004.![]() ![]() ![]() |
|
R. Fukuizumi
and A. Sacchetti
, Bifurcation and stability for nonlinear Schrödinger equations with double well potential in the semiclassical limit, J. Stat. Phys., 145 (2011)
, 1546-1594.
doi: 10.1007/s10955-011-0356-y.![]() ![]() ![]() |
|
A. Haraux,
Nonlinear Evolution Equations: Global Behavior of Solutions vol. 841 of Lecture Notes in Math., Springer-Verlag, Heidelberg, 1981.
![]() ![]() |
|
E. Hefter
, Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics, Phys. Rev, 32 (1985)
, 1201-1204.
doi: 10.1103/PhysRevA.32.1201.![]() ![]() |
|
R.K. Jackson
and M. Weinstein
, Geometric analysis of bifurcation and symmetry breaking in a {G}ross-{P}itaevskii equation, J. Stat. Phys., 116 (2004)
, 881-905.
doi: 10.1023/B:JOSS.0000037238.94034.75.![]() ![]() ![]() |
|
M. Kaminaga
and M. Ohta
, Stability of standing waves for nonlinear {S}chrödinger equation with attractive delta potential and repulsive nonlinearity, Saitama Math. J., 26 (2009)
, 39-48.
![]() ![]() |
|
C.M. Khalique
and A. Biswas
, Gaussian soliton solution to nonlinear Schrödinger's equation with log law nonlinearity, International Journal of Physical Sciences, 5 (2010)
, 280-282.
![]() |
|
E.W. Kirr
, P. Kevrekidis
and D. Pelinovsky
, Symmetry-breaking bifurcation in the nonlinear Schrödinger equation with symmetric potentials, Comm. Math. Phys., 308 (2011)
, 795-844.
doi: 10.1007/s00220-011-1361-3.![]() ![]() ![]() |
|
A. Kostenko
and M. Malamud
, Spectral theory of semibounded Schrödinger operators with $δ^{\prime}$-interactions, Ann. Henri Poincaré, 15 (2014)
, 501-541.
doi: 10.1007/s00023-013-0245-9.![]() ![]() ![]() |
|
S. Le Coz
, R. Fukuizumi
, G. Fibich
, B. Ksherim
and Y. Sivan
, Instability of bound states of a nonlinear Schrödinger equation with a dirac potential, Phys. D, 237 (2008)
, 1103-1128.
doi: 10.1016/j.physd.2007.12.004.![]() ![]() ![]() |
|
E. Lieb and M. Loss,
Analysis 2nd edition, vol. ~14 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/014.![]() ![]() ![]() |
|
A. ~Sacchetti, Universal critical power for nonlinear Schrödinger equations with symmetric double well potential Phys. Rev. Lett. 103 (2009), 194101.
doi: 10.1103/PhysRevLett.103.194101.![]() ![]() |
|
K. Schmüdgen,
Unbounded Self-adjoint Operators on Hilbert Space vol. 265 of Graduate Texts in Mathematics, Springer, Dordrecht, 2012.
doi: 10.1007/978-94-007-4753-1.![]() ![]() ![]() |
|
J. Vázquez
, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim, 12 (1984)
, 191-202.
doi: 10.1007/BF01449041.![]() ![]() ![]() |
|
K. Zloshchastiev
, Logarithmic nonlinearity in theories of quantum gravity: {O}rigin of time and observational consequences, Grav. Cosmol., 16 (2010)
, 288-297.
doi: 10.1134/S0202289310040067.![]() ![]() ![]() |
The graph of the curve