June  2017, 6(2): 155-175. doi: 10.3934/eect.2017009

Stability of ground states for logarithmic Schrödinger equation with a $δ^{\prime}$-interaction

Department of Mathematics, IME-USP, Cidade Universitária, CEP 05508-090, São Paulo, SP, Brazil

Received  July 2016 Revised  February 2017 Published  April 2017

In this paper we study the one-dimensional logarithmic Schrödin-\break ger equation perturbed by an attractive
$δ^{\prime}$
-interaction
$i{\partial _t}u + \partial _x^2u + {\rm{ }}{\gamma ^\prime }(x)u + u{\mkern 1mu} {\rm{Log|}}u|2 = 0,(x,t) \in \mathbb{R} \times \mathbb{R} ,$
where $γ>0$. We establish the existence and uniqueness of the solutions of the associated Cauchy problem in a suitable functional framework. In the attractive $δ^{\prime}$-interaction case, the set of the ground state is completely determined. More precisely: if $0 < γ≤ 2$, then there is a single ground state and it is an odd function; if $γ>2$, then there exist two non-symmetric ground states. Finally, we show that the ground states are orbitally stable via a variational approach.
Citation: Alex H. Ardila. Stability of ground states for logarithmic Schrödinger equation with a $δ^{\prime}$-interaction. Evolution Equations & Control Theory, 2017, 6 (2) : 155-175. doi: 10.3934/eect.2017009
References:
[1]

R. Adami and D. Noja, Existence of dynamics for a 1-d NLS equation perturbed with a generalized point defect J. Phys. A Math. Theor. 42 (2009), 495302, 19pp. doi: 10.1088/1751-8113/42/49/495302.  Google Scholar

[2]

R. Adami and D. Noja, Nonlinearity-defect interaction: Symmetry breaking bifurcation in a NLS with δ' impurity, Nanosystems, 2 (2011), 5-19.   Google Scholar

[3]

R. Adami and D. Noja, Stability and symmetry-breaking bifurcation for the ground states of a NLS with a δ' interaction, Comm. Math. Phys., 318 (2013), 247-289.  doi: 10.1007/s00220-012-1597-6.  Google Scholar

[4]

R. Adami and D. Noja, Exactly solvable models and bifurcations: The case of the cubic NLS with a δ or a δ' interaction in dimension one, Math. Model. Nat. Phenom., 9 (2014), 1-16.  doi: 10.1051/mmnp/20149501.  Google Scholar

[5]

R. AdamiD. Noja and N. Visciglia, Constrained energy minimization and ground states for NLS with point defects, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1155-1188.  doi: 10.3934/dcdsb.2013.18.1155.  Google Scholar

[6]

S. Albeverio, F. Gesztesy, R. H∅egh-Krohn and H. Holden, Solvable Models in Quantum Mechanics Springer-Verlag, New York, 1988. doi: 10.1007/978-3-642-88201-2.  Google Scholar

[7]

J. Angulo and A. H. Ardila, Stability of standing waves for logarithmic Schrödinger equation with attractive delta potential, Indiana Univ. Math. J., to appear. Google Scholar

[8]

A.H. Ardila, Orbital stability of gausson solutions to logarithmic Schrödinger equations, Electron. J. Differential Equations, 335 (2016), 1-9.   Google Scholar

[9]

I. Bialynicki-Birula and J. Mycielski, Nonlinear wave mechanics, Ann. Phys, 100 (1976), 62-93.  doi: 10.1016/0003-4916(76)90057-9.  Google Scholar

[10]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.2307/2044999.  Google Scholar

[11]

T. Cazenave, Stable solutions of the logarithmic Schrödinger equation, Nonlinear. Anal., T.M.A., 7 (1983), 1127-1140.  doi: 10.1016/0362-546X(83)90022-6.  Google Scholar

[12]

T. Cazenave, Semilinear Schrödinger Equations Courant Lecture Notes in Mathematics, 10, American Mathematical Society, Courant Institute of Mathematical Sciences, 2003. doi: 10.1090/cln/010.  Google Scholar

[13]

T. Cazenave and P. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.  doi: 10.1007/BF01403504.  Google Scholar

[14]

R. Fukuizumi and L. Jeanjean, Stability of standing waves for a nonlinear Schrödinger equation with a repulsive {D}irac delta potential, Discrete Contin. Dyn. Syst., 21 (2008), 121-136.  doi: 10.3934/dcds.2008.21.121.  Google Scholar

[15]

R. FukuizumiM. Ohta and T. Ozawa, Nonlinear Schrödinger equation with a point defect, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 837-845.  doi: 10.1016/j.anihpc.2007.03.004.  Google Scholar

[16]

R. Fukuizumi and A. Sacchetti, Bifurcation and stability for nonlinear Schrödinger equations with double well potential in the semiclassical limit, J. Stat. Phys., 145 (2011), 1546-1594.  doi: 10.1007/s10955-011-0356-y.  Google Scholar

[17]

A. Haraux, Nonlinear Evolution Equations: Global Behavior of Solutions vol. 841 of Lecture Notes in Math., Springer-Verlag, Heidelberg, 1981.  Google Scholar

[18]

E. Hefter, Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics, Phys. Rev, 32 (1985), 1201-1204.  doi: 10.1103/PhysRevA.32.1201.  Google Scholar

[19]

R.K. Jackson and M. Weinstein, Geometric analysis of bifurcation and symmetry breaking in a {G}ross-{P}itaevskii equation, J. Stat. Phys., 116 (2004), 881-905.  doi: 10.1023/B:JOSS.0000037238.94034.75.  Google Scholar

[20]

M. Kaminaga and M. Ohta, Stability of standing waves for nonlinear {S}chrödinger equation with attractive delta potential and repulsive nonlinearity, Saitama Math. J., 26 (2009), 39-48.   Google Scholar

[21]

C.M. Khalique and A. Biswas, Gaussian soliton solution to nonlinear Schrödinger's equation with log law nonlinearity, International Journal of Physical Sciences, 5 (2010), 280-282.   Google Scholar

[22]

E.W. KirrP. Kevrekidis and D. Pelinovsky, Symmetry-breaking bifurcation in the nonlinear Schrödinger equation with symmetric potentials, Comm. Math. Phys., 308 (2011), 795-844.  doi: 10.1007/s00220-011-1361-3.  Google Scholar

[23]

A. Kostenko and M. Malamud, Spectral theory of semibounded Schrödinger operators with $δ^{\prime}$-interactions, Ann. Henri Poincaré, 15 (2014), 501-541.  doi: 10.1007/s00023-013-0245-9.  Google Scholar

[24]

S. Le CozR. FukuizumiG. FibichB. Ksherim and Y. Sivan, Instability of bound states of a nonlinear Schrödinger equation with a dirac potential, Phys. D, 237 (2008), 1103-1128.  doi: 10.1016/j.physd.2007.12.004.  Google Scholar

[25]

E. Lieb and M. Loss, Analysis 2nd edition, vol. ~14 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001. doi: 10.1090/gsm/014.  Google Scholar

[26]

A. ~Sacchetti, Universal critical power for nonlinear Schrödinger equations with symmetric double well potential Phys. Rev. Lett. 103 (2009), 194101. doi: 10.1103/PhysRevLett.103.194101.  Google Scholar

[27]

K. Schmüdgen, Unbounded Self-adjoint Operators on Hilbert Space vol. 265 of Graduate Texts in Mathematics, Springer, Dordrecht, 2012. doi: 10.1007/978-94-007-4753-1.  Google Scholar

[28]

J. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim, 12 (1984), 191-202.  doi: 10.1007/BF01449041.  Google Scholar

[29]

K. Zloshchastiev, Logarithmic nonlinearity in theories of quantum gravity: {O}rigin of time and observational consequences, Grav. Cosmol., 16 (2010), 288-297.  doi: 10.1134/S0202289310040067.  Google Scholar

show all references

References:
[1]

R. Adami and D. Noja, Existence of dynamics for a 1-d NLS equation perturbed with a generalized point defect J. Phys. A Math. Theor. 42 (2009), 495302, 19pp. doi: 10.1088/1751-8113/42/49/495302.  Google Scholar

[2]

R. Adami and D. Noja, Nonlinearity-defect interaction: Symmetry breaking bifurcation in a NLS with δ' impurity, Nanosystems, 2 (2011), 5-19.   Google Scholar

[3]

R. Adami and D. Noja, Stability and symmetry-breaking bifurcation for the ground states of a NLS with a δ' interaction, Comm. Math. Phys., 318 (2013), 247-289.  doi: 10.1007/s00220-012-1597-6.  Google Scholar

[4]

R. Adami and D. Noja, Exactly solvable models and bifurcations: The case of the cubic NLS with a δ or a δ' interaction in dimension one, Math. Model. Nat. Phenom., 9 (2014), 1-16.  doi: 10.1051/mmnp/20149501.  Google Scholar

[5]

R. AdamiD. Noja and N. Visciglia, Constrained energy minimization and ground states for NLS with point defects, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1155-1188.  doi: 10.3934/dcdsb.2013.18.1155.  Google Scholar

[6]

S. Albeverio, F. Gesztesy, R. H∅egh-Krohn and H. Holden, Solvable Models in Quantum Mechanics Springer-Verlag, New York, 1988. doi: 10.1007/978-3-642-88201-2.  Google Scholar

[7]

J. Angulo and A. H. Ardila, Stability of standing waves for logarithmic Schrödinger equation with attractive delta potential, Indiana Univ. Math. J., to appear. Google Scholar

[8]

A.H. Ardila, Orbital stability of gausson solutions to logarithmic Schrödinger equations, Electron. J. Differential Equations, 335 (2016), 1-9.   Google Scholar

[9]

I. Bialynicki-Birula and J. Mycielski, Nonlinear wave mechanics, Ann. Phys, 100 (1976), 62-93.  doi: 10.1016/0003-4916(76)90057-9.  Google Scholar

[10]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.2307/2044999.  Google Scholar

[11]

T. Cazenave, Stable solutions of the logarithmic Schrödinger equation, Nonlinear. Anal., T.M.A., 7 (1983), 1127-1140.  doi: 10.1016/0362-546X(83)90022-6.  Google Scholar

[12]

T. Cazenave, Semilinear Schrödinger Equations Courant Lecture Notes in Mathematics, 10, American Mathematical Society, Courant Institute of Mathematical Sciences, 2003. doi: 10.1090/cln/010.  Google Scholar

[13]

T. Cazenave and P. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.  doi: 10.1007/BF01403504.  Google Scholar

[14]

R. Fukuizumi and L. Jeanjean, Stability of standing waves for a nonlinear Schrödinger equation with a repulsive {D}irac delta potential, Discrete Contin. Dyn. Syst., 21 (2008), 121-136.  doi: 10.3934/dcds.2008.21.121.  Google Scholar

[15]

R. FukuizumiM. Ohta and T. Ozawa, Nonlinear Schrödinger equation with a point defect, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 837-845.  doi: 10.1016/j.anihpc.2007.03.004.  Google Scholar

[16]

R. Fukuizumi and A. Sacchetti, Bifurcation and stability for nonlinear Schrödinger equations with double well potential in the semiclassical limit, J. Stat. Phys., 145 (2011), 1546-1594.  doi: 10.1007/s10955-011-0356-y.  Google Scholar

[17]

A. Haraux, Nonlinear Evolution Equations: Global Behavior of Solutions vol. 841 of Lecture Notes in Math., Springer-Verlag, Heidelberg, 1981.  Google Scholar

[18]

E. Hefter, Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics, Phys. Rev, 32 (1985), 1201-1204.  doi: 10.1103/PhysRevA.32.1201.  Google Scholar

[19]

R.K. Jackson and M. Weinstein, Geometric analysis of bifurcation and symmetry breaking in a {G}ross-{P}itaevskii equation, J. Stat. Phys., 116 (2004), 881-905.  doi: 10.1023/B:JOSS.0000037238.94034.75.  Google Scholar

[20]

M. Kaminaga and M. Ohta, Stability of standing waves for nonlinear {S}chrödinger equation with attractive delta potential and repulsive nonlinearity, Saitama Math. J., 26 (2009), 39-48.   Google Scholar

[21]

C.M. Khalique and A. Biswas, Gaussian soliton solution to nonlinear Schrödinger's equation with log law nonlinearity, International Journal of Physical Sciences, 5 (2010), 280-282.   Google Scholar

[22]

E.W. KirrP. Kevrekidis and D. Pelinovsky, Symmetry-breaking bifurcation in the nonlinear Schrödinger equation with symmetric potentials, Comm. Math. Phys., 308 (2011), 795-844.  doi: 10.1007/s00220-011-1361-3.  Google Scholar

[23]

A. Kostenko and M. Malamud, Spectral theory of semibounded Schrödinger operators with $δ^{\prime}$-interactions, Ann. Henri Poincaré, 15 (2014), 501-541.  doi: 10.1007/s00023-013-0245-9.  Google Scholar

[24]

S. Le CozR. FukuizumiG. FibichB. Ksherim and Y. Sivan, Instability of bound states of a nonlinear Schrödinger equation with a dirac potential, Phys. D, 237 (2008), 1103-1128.  doi: 10.1016/j.physd.2007.12.004.  Google Scholar

[25]

E. Lieb and M. Loss, Analysis 2nd edition, vol. ~14 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001. doi: 10.1090/gsm/014.  Google Scholar

[26]

A. ~Sacchetti, Universal critical power for nonlinear Schrödinger equations with symmetric double well potential Phys. Rev. Lett. 103 (2009), 194101. doi: 10.1103/PhysRevLett.103.194101.  Google Scholar

[27]

K. Schmüdgen, Unbounded Self-adjoint Operators on Hilbert Space vol. 265 of Graduate Texts in Mathematics, Springer, Dordrecht, 2012. doi: 10.1007/978-94-007-4753-1.  Google Scholar

[28]

J. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim, 12 (1984), 191-202.  doi: 10.1007/BF01449041.  Google Scholar

[29]

K. Zloshchastiev, Logarithmic nonlinearity in theories of quantum gravity: {O}rigin of time and observational consequences, Grav. Cosmol., 16 (2010), 288-297.  doi: 10.1134/S0202289310040067.  Google Scholar

Figure 1.  The graph of the curve $\mathcal{I}_{1}\cup \mathcal{I}_{2}$.
[1]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[2]

Wen Feng, Milena Stanislavova, Atanas Stefanov. On the spectral stability of ground states of semi-linear Schrödinger and Klein-Gordon equations with fractional dispersion. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1371-1385. doi: 10.3934/cpaa.2018067

[3]

Chuangye Liu, Zhi-Qiang Wang. A complete classification of ground-states for a coupled nonlinear Schrödinger system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 115-130. doi: 10.3934/cpaa.2017005

[4]

Chang-Lin Xiang. Remarks on nondegeneracy of ground states for quasilinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5789-5800. doi: 10.3934/dcds.2016054

[5]

Zupei Shen, Zhiqing Han, Qinqin Zhang. Ground states of nonlinear Schrödinger equations with fractional Laplacians. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2115-2125. doi: 10.3934/dcdss.2019136

[6]

Daniele Garrisi, Vladimir Georgiev. Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4309-4328. doi: 10.3934/dcds.2017184

[7]

Jaime Angulo Pava, César A. Hernández Melo. On stability properties of the Cubic-Quintic Schródinger equation with $\delta$-point interaction. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2093-2116. doi: 10.3934/cpaa.2019094

[8]

Giuseppe Maria Coclite, Helge Holden. Ground states of the Schrödinger-Maxwell system with dirac mass: Existence and asymptotics. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 117-132. doi: 10.3934/dcds.2010.27.117

[9]

Eugenio Montefusco, Benedetta Pellacci, Marco Squassina. Energy convexity estimates for non-degenerate ground states of nonlinear 1D Schrödinger systems. Communications on Pure & Applied Analysis, 2010, 9 (4) : 867-884. doi: 10.3934/cpaa.2010.9.867

[10]

Dongdong Qin, Xianhua Tang, Qingfang Wu. Ground states of nonlinear Schrödinger systems with periodic or non-periodic potentials. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1261-1280. doi: 10.3934/cpaa.2019061

[11]

Zhitao Zhang, Haijun Luo. Symmetry and asymptotic behavior of ground state solutions for schrödinger systems with linear interaction. Communications on Pure & Applied Analysis, 2018, 17 (3) : 787-806. doi: 10.3934/cpaa.2018040

[12]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[13]

Kenji Nakanishi, Tristan Roy. Global dynamics above the ground state for the energy-critical Schrödinger equation with radial data. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2023-2058. doi: 10.3934/cpaa.2016026

[14]

Chenmin Sun, Hua Wang, Xiaohua Yao, Jiqiang Zheng. Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2207-2228. doi: 10.3934/dcds.2018091

[15]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

[16]

Silvia Cingolani, Mónica Clapp. Symmetric semiclassical states to a magnetic nonlinear Schrödinger equation via equivariant Morse theory. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1263-1281. doi: 10.3934/cpaa.2010.9.1263

[17]

Minbo Yang, Yanheng Ding. Existence and multiplicity of semiclassical states for a quasilinear Schrödinger equation in $\mathbb{R}^N$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 429-449. doi: 10.3934/cpaa.2013.12.429

[18]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[19]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[20]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (15)
  • HTML views (14)
  • Cited by (1)

Other articles
by authors

[Back to Top]