\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic for the perturbed heavy ball system with vanishing damping term

  • *Corresponding author: Ramzi May

    *Corresponding author: Ramzi May
The authors are grateful to the Deanship of Scientific Research at King Faisal University for financially and morally supporting this work under Project 160052
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We investigate the long time behavior of solutions to the differential equation:

    $\ddot{x}(t)+\frac{c}{{{\left( 1+t \right)}^{\alpha }}}\dot{x}(t)+\nabla \Phi \left( x(t) \right)=g(t),~t\ge 0,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( 1 \right)$

    where $c$ is nonnegative constant, $α∈\lbrack0,1[,Φ \ \ {\rm{is \ \ a}}\ \ C^{1}$ convex function defined on a Hilbert space $\mathcal{H}$ and $g∈ L^{1}(0,+∞;\mathcal{H}).$ We obtain sufficient conditions on the source term $g(t)$ ensuring the weak or the strong convergence of any trajectory $x(t)$ of (1) as $t\to ∞$ to a minimizer of the function $Φ$ if one exists.

    Mathematics Subject Classification: Primary: 34A34, 34A40; Secondary: 34D05, 34E10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   F. Alvarez , On the minimizing properties of a second order dissipative system in Hilbert spaces, SIAM J. Cont. Optim., 38 (2000) , 1102-1119.  doi: 10.1137/S0363012998335802.
      H. Attouch , Z. Chbani , J. Peypouquet  and  P. Redont , Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity, Math Program Ser B, (2016) , 1-53.  doi: 10.1007/s10107-016-0992-8.
      H. Attouch , X. Goudou  and  P. Redont , The heavy ball with friction method, Ⅰ: The continuous dynamical system: Global exploration of the the local minima of a real valued function by asymptotic analysis of a dissipative dynamical system, Commun. Contemp. Math., 2 (2000) , 1-34.  doi: 10.1142/S0219199700000025.
      M. Balti and R. May, Asymptotic for a semilinear hyperbolic equation with asymptotically vanishing damping term, convex potential, and integrable source, Submitted, arXiv: 1608. 08760v1.
      A. Cabot  and  P. Frankel , Asymptotics for some semilinear hyperbolic equations with non-autonomous damping, J. Differential Equations, 252 (2012) , 294-322.  doi: 10.1016/j.jde.2011.09.012.
      A. Haraux  and  M. A. Jendoubi , On a second order dissipative ODE in Hilbert space with an integrable source term, Acta Mathematica Scientia, 32 (2012) , 155-163.  doi: 10.1016/S0252-9602(12)60009-5.
      M. A. Jendoubi  and  R. May , Asymptotics for a second-order differential equation with non-autonomous damping and an integrable source term, Applicable Analysis, 94 (2015) , 436-444.  doi: 10.1080/00036811.2014.903569.
      R. May , Long time behavior for a semilinear hyperbolic equation with asymptotically vanishing damping term and convex potential, J. Math. Anal. Appl., 430 (2015) , 410-416.  doi: 10.1016/j.jmaa.2015.04.067.
      Z. Opial , Weak convergence of the sequence of successive aproximation for nonexpansive mapping, Bull. Amer. Math. Soc., 73 (1967) , 591-597.  doi: 10.1090/S0002-9904-1967-11761-0.
      W. Su , S. Boyd  and  E. Candes , A differential equations for modeling Nestrov's accelerated gradient method: Theory and insights, Journal of Machine Learning Research, 17 (2016) , 1-43. 
  • 加载中
SHARE

Article Metrics

HTML views(1606) PDF downloads(218) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return