We investigate the long time behavior of solutions to the differential equation:
$\ddot{x}(t)+\frac{c}{{{\left( 1+t \right)}^{\alpha }}}\dot{x}(t)+\nabla \Phi \left( x(t) \right)=g(t),~t\ge 0,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( 1 \right)$
where $c$ is nonnegative constant, $α∈\lbrack0,1[,Φ \ \ {\rm{is \ \ a}}\ \ C^{1}$ convex function defined on a Hilbert space $\mathcal{H}$ and $g∈ L^{1}(0,+∞;\mathcal{H}).$ We obtain sufficient conditions on the source term $g(t)$ ensuring the weak or the strong convergence of any trajectory $x(t)$ of (1) as $t\to ∞$ to a minimizer of the function $Φ$ if one exists.
Citation: |
F. Alvarez , On the minimizing properties of a second order dissipative system in Hilbert spaces, SIAM J. Cont. Optim., 38 (2000) , 1102-1119. doi: 10.1137/S0363012998335802. | |
H. Attouch , Z. Chbani , J. Peypouquet and P. Redont , Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity, Math Program Ser B, (2016) , 1-53. doi: 10.1007/s10107-016-0992-8. | |
H. Attouch , X. Goudou and P. Redont , The heavy ball with friction method, Ⅰ: The continuous dynamical system: Global exploration of the the local minima of a real valued function by asymptotic analysis of a dissipative dynamical system, Commun. Contemp. Math., 2 (2000) , 1-34. doi: 10.1142/S0219199700000025. | |
M. Balti and R. May, Asymptotic for a semilinear hyperbolic equation with asymptotically vanishing damping term, convex potential, and integrable source, Submitted, arXiv: 1608. 08760v1. | |
A. Cabot and P. Frankel , Asymptotics for some semilinear hyperbolic equations with non-autonomous damping, J. Differential Equations, 252 (2012) , 294-322. doi: 10.1016/j.jde.2011.09.012. | |
A. Haraux and M. A. Jendoubi , On a second order dissipative ODE in Hilbert space with an integrable source term, Acta Mathematica Scientia, 32 (2012) , 155-163. doi: 10.1016/S0252-9602(12)60009-5. | |
M. A. Jendoubi and R. May , Asymptotics for a second-order differential equation with non-autonomous damping and an integrable source term, Applicable Analysis, 94 (2015) , 436-444. doi: 10.1080/00036811.2014.903569. | |
R. May , Long time behavior for a semilinear hyperbolic equation with asymptotically vanishing damping term and convex potential, J. Math. Anal. Appl., 430 (2015) , 410-416. doi: 10.1016/j.jmaa.2015.04.067. | |
Z. Opial , Weak convergence of the sequence of successive aproximation for nonexpansive mapping, Bull. Amer. Math. Soc., 73 (1967) , 591-597. doi: 10.1090/S0002-9904-1967-11761-0. | |
W. Su , S. Boyd and E. Candes , A differential equations for modeling Nestrov's accelerated gradient method: Theory and insights, Journal of Machine Learning Research, 17 (2016) , 1-43. |