We study an optimal control problem for certain evolution equations in two component composites with $\varepsilon$-periodic disconnected inclusions of size $\varepsilon$ in presence of a jump of the solution on the interface that varies according to a parameter $γ$. In particular the case $γ=1$ is examinated.
Citation: |
J. L. Auriault
and H. Ene
, Macroscopic modelling of heat transfer in composites with interfacial thermal barrier, Internat. J. Heat Mass Transfer, 37 (1994)
, 2885-2892.
doi: 10.1016/0017-9310(94)90342-5.![]() ![]() |
|
E. Canon
and J. N. Pernin
, Homogenization of diffusion in composite media with interfacial barrier, Rev. Roumaine Math. Pures Appl., 44 (1999)
, 23-36.
![]() ![]() |
|
D. Cioranescu
and P. Donato
, Exact internal controllability in perforated domains, J. Math. Pures Appl., 68 (1989)
, 185-213.
![]() ![]() |
|
D. Cioranescu and P. Donato,
An Introduction to Homogenization Oxford Lecture Ser. Math., Appl., 17, Oxford University Press, New York, 1999.
![]() ![]() |
|
D. Cioranescu
, P. Donato
and E. Zuazua
, Exact boundary controllability for the wave equation in domains with small holes, J. Math. Pures Appl., 71 (1992)
, 343-377.
![]() ![]() |
|
D. Cioranescu
and J. Saint Jean Paulin
, Homogenization in open sets with holes, J. Math. Pures. Appl., 71 (1979)
, 590-607.
doi: 10.1016/0022-247X(79)90211-7.![]() ![]() ![]() |
|
U. De Maio
, A. Gaudiello
and C. Lefter
, Optimal Control for a Parabolic Problem in a Domain with Higly Oscillating Boundary, Appl. Anal., 83 (2004)
, 1245-1264.
doi: 10.1080/00036810410001724670.![]() ![]() ![]() |
|
U. De Maio
, L. Faella
and C. Perugia
, Optimal control problem for an anisotropic parabolic problem in a domain with very rough boundary, Ric. Mat, 63 (2014)
, 307-328.
doi: 10.1007/s11587-014-0183-y.![]() ![]() ![]() |
|
U. De Maio
, L. Faella
and C. Perugia
, Optimal control for a second-order linear evolution problem in a domain with oscillating boundary, Complex Var. Elliptic Equ., 60 (2015)
, 1392-1410.
doi: 10.1080/17476933.2015.1022169.![]() ![]() ![]() |
|
U. De Maio
, A. K. Nandakumaran
and C. Perugia
, Exact internal controllability for the wave equation in a domain with oscillating boundary with neumann boundary condition, Evol. Equ. Control Theory, 4 (2015)
, 325-346.
doi: 10.3934/eect.2015.4.325.![]() ![]() ![]() |
|
P. Donato
, Some corrector results for composites with imperfect interface, Rend. Mat. Appl, 26 (2006)
, 189-209.
![]() ![]() |
|
P. Donato, Homogenization of a class of imperfect transmission problems, in Multiscale Problems: Theory, Numerical Approximation and Applications, Series in Contemporary Applied
Mathematics, A. Damlamian, B. Miara and T. Li Editors, Higher Education Press, Beijing,
16 (2011), 109–147.
doi: 10.1142/9789814366892_0004.![]() ![]() |
|
P. Donato
, L. Faella
and S. Monsurrò
, Homogenization of the wave equation in composites with imperfect interface: A memory effect, J. Math. Pures Appl., 87 (2007)
, 119-143.
doi: 10.1016/j.matpur.2006.11.004.![]() ![]() ![]() |
|
P. Donato
, L. Faella
and S. Monsurrò
, Correctors for the homogenization of a class of hyperbolic equations with imperfect interfaces, SIAM J. Math. Anal., 40 (2009)
, 1952-1978.
doi: 10.1137/080712684.![]() ![]() ![]() |
|
P. Donato
and E. Jose
, Corrector results for a parabolic problem with a memory effect, ESAIM: Math. Model. Numer. Anal., 44 (2010)
, 421-454.
doi: 10.1051/m2an/2010008.![]() ![]() ![]() |
|
P. Donato
and E. Jose
, Asymptotic behavior of the approximate controls for parabolic equations with interfacial contact resistance, ESAIM: COCV, 21 (2015)
, 138-164.
doi: 10.1051/cocv/2014029.![]() ![]() ![]() |
|
P. Donato
and S. Monsurrò
, Homogenization of two heat conductors with interfacial contact resistance, Anal. Appl., 2 (2004)
, 247-273.
doi: 10.1142/S0219530504000345.![]() ![]() ![]() |
|
P. Donato
and A. Nabil
, Homogenization and correctors for the heat equation in perforated domains, Ricerche Mat., 50 (2001)
, 115-144.
![]() ![]() |
|
T. Durante
, L. Faella
and C. Perugia
, Homogenization and behaviour of optimal controls for the wave equation in domains with oscillating boudary, NoDEA Nonlinear Differential Equations Appl., 14 (2007)
, 455-489.
doi: 10.1007/s00030-007-3043-6.![]() ![]() ![]() |
|
T. Durante
and T. A. Mel'nyk
, Asymptotic analysis of an optimal control problem involving a thick two-level junction with alternate type of controls, J. Optim. Th. and Appl., 144 (2010)
, 205-225.
doi: 10.1007/s10957-009-9604-6.![]() ![]() ![]() |
|
T. Durante
and T. A. Mel'nyk
, Homogenization of quasilinear optimal control problems involving a thick multilevel junction of type 3:2:1, ESAIM: Control, Optimisation and Calculus of Variations, 18 (2012)
, 583-610.
doi: 10.1051/cocv/2011107.![]() ![]() ![]() |
|
L. Faella and S. Monsurr`o, Memory effects arising in the homogenization of composites with
inclusions, Topics on Mathematics for Smart System. World Sci. Publ., Hackensack, USA,
(2007), 107–121.
doi: 10.1142/9789812706874_0008.![]() ![]() ![]() |
|
L. Faella
and C. Perugia
, Homogenization of a Ginzburg-Landau problem in a perforated domain with mixed boundary conditions, Bound. Value Probl, 223 (2014)
, 1-28.
doi: 10.1186/s13661-014-0223-2.![]() ![]() ![]() |
|
L. Faella
and C. Perugia
, Optimal control for evolutionary imperfect transmission problems, Bound. Value Probl, 50 (2015)
, 1-16.
doi: 10.1186/s13661-015-0310-z.![]() ![]() ![]() |
|
H. C. Hummel
, Homogenization for heat transfer in polycristals with interfacial resistances, Appl. Anal., 75 (2000)
, 403-424.
doi: 10.1080/00036810008840857.![]() ![]() ![]() |
|
J. L. Lions,
Optimal Control of Systems Governed by Partial Differential Equations Springer-Verlag Berlin Heidelberg New York, 1971.
![]() |
|
J. L. Lions
, Contràlabilité Exacte et Homogénéisation, I. Asymptotic Analysis, 1 (1988)
, 3-11.
![]() |
|
J. L. Lions and E. Magenes,
Non-Homogeneous Boundary Value Problems and Applications, Vol I Springer-Verlag Berlin Heidelberg New York, 1972.
![]() |
|
R. Lipton
, Heat conduction in fine scale mixtures with interfacial contact resistance, SIAM J. Appl. Math., 58 (1998)
, 55-72.
doi: 10.1137/S0036139995295153.![]() ![]() ![]() |
|
R. Lipton
and B. Vernescu
, Composite with imperfect interface, Proc. R. Soc. Lond. Ser. A, 452 (1996)
, 329-358.
doi: 10.1098/rspa.1996.0018.![]() ![]() ![]() |
|
S. Monsurró
, Homogenization of a two-component composite with interfacial thermal barrier, Adv. Math. Sci. Appl., 13 (2003)
, 43-63.
![]() ![]() |
|
S. Monsurrò
, Erratum for the paper ''Homogenization of a two-component composite with interfacial thermal barrier", Adv. Math. Sci. Appl., 14 (2004)
, 375-377.
![]() ![]() |
|
S. Monsurrò
, Homogenization of a composite with very small inclusions and imperfect interface. Multi scale problems and asymptotic analysis, GAKUTO Internat, Ser. Math. Sci.
Appl., Gakkotosho, Tokyo, 24 (2006)
, 217-232.
![]() ![]() |
|
L. Tartar, Cours Peccot, Collège de France (March 1977). Partially written in F. Murat, HConvergence, Séminaire d'analyse fonctionnelle et numérique de l'Université d'Alger (1977-78). English translation in Mathematical Modeling of Composite Materials, A. Cherkaev and R. V. Kohon ed., Progress in Nonlinear Differential Equations and their Applications,
Birkh¨auser-Verlag, (1997), 21–44.
![]() |
|
E. Zeidler,
Nonlinear Functional Analysis and its Applications, Vol Ⅱ, Part A and B Springer-Verlag, New York, 1986.
doi: 10.1007/978-1-4612-4838-5.![]() ![]() ![]() |