Advanced Search
Article Contents
Article Contents

Optimal control for a hyperbolic problem in composites with imperfect interface: A memory effect

  • * Corresponding author: Carmen Perugia

    * Corresponding author: Carmen Perugia
Author's contributions: The authors conceived and wrote this article in collaboration and with same responsibility. All of them read and approved the final manuscript
Abstract / Introduction Full Text(HTML) Figure(1) Related Papers Cited by
  • We study an optimal control problem for certain evolution equations in two component composites with $\varepsilon$-periodic disconnected inclusions of size $\varepsilon$ in presence of a jump of the solution on the interface that varies according to a parameter $γ$. In particular the case $γ=1$ is examinated.

    Mathematics Subject Classification: 35B27, 35L10, 49J20, 93C20.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  $\Omega_{\varepsilon}$

  •   J. L. Auriault  and  H. Ene , Macroscopic modelling of heat transfer in composites with interfacial thermal barrier, Internat. J. Heat Mass Transfer, 37 (1994) , 2885-2892.  doi: 10.1016/0017-9310(94)90342-5.
      E. Canon  and  J. N. Pernin , Homogenization of diffusion in composite media with interfacial barrier, Rev. Roumaine Math. Pures Appl., 44 (1999) , 23-36. 
      D. Cioranescu  and  P. Donato , Exact internal controllability in perforated domains, J. Math. Pures Appl., 68 (1989) , 185-213. 
      D. Cioranescu and P. Donato, An Introduction to Homogenization Oxford Lecture Ser. Math., Appl., 17, Oxford University Press, New York, 1999.
      D. Cioranescu , P. Donato  and  E. Zuazua , Exact boundary controllability for the wave equation in domains with small holes, J. Math. Pures Appl., 71 (1992) , 343-377. 
      D. Cioranescu  and  J. Saint Jean Paulin , Homogenization in open sets with holes, J. Math. Pures. Appl., 71 (1979) , 590-607.  doi: 10.1016/0022-247X(79)90211-7.
      U. De Maio , A. Gaudiello  and  C. Lefter , Optimal Control for a Parabolic Problem in a Domain with Higly Oscillating Boundary, Appl. Anal., 83 (2004) , 1245-1264.  doi: 10.1080/00036810410001724670.
      U. De Maio , L. Faella  and  C. Perugia , Optimal control problem for an anisotropic parabolic problem in a domain with very rough boundary, Ric. Mat, 63 (2014) , 307-328.  doi: 10.1007/s11587-014-0183-y.
      U. De Maio , L. Faella  and  C. Perugia , Optimal control for a second-order linear evolution problem in a domain with oscillating boundary, Complex Var. Elliptic Equ., 60 (2015) , 1392-1410.  doi: 10.1080/17476933.2015.1022169.
      U. De Maio , A. K. Nandakumaran  and  C. Perugia , Exact internal controllability for the wave equation in a domain with oscillating boundary with neumann boundary condition, Evol. Equ. Control Theory, 4 (2015) , 325-346.  doi: 10.3934/eect.2015.4.325.
      P. Donato , Some corrector results for composites with imperfect interface, Rend. Mat. Appl, 26 (2006) , 189-209. 
      P. Donato, Homogenization of a class of imperfect transmission problems, in Multiscale Problems: Theory, Numerical Approximation and Applications, Series in Contemporary Applied Mathematics, A. Damlamian, B. Miara and T. Li Editors, Higher Education Press, Beijing, 16 (2011), 109–147. doi: 10.1142/9789814366892_0004.
      P. Donato , L. Faella  and  S. Monsurrò , Homogenization of the wave equation in composites with imperfect interface: A memory effect, J. Math. Pures Appl., 87 (2007) , 119-143.  doi: 10.1016/j.matpur.2006.11.004.
      P. Donato , L. Faella  and  S. Monsurrò , Correctors for the homogenization of a class of hyperbolic equations with imperfect interfaces, SIAM J. Math. Anal., 40 (2009) , 1952-1978.  doi: 10.1137/080712684.
      P. Donato  and  E. Jose , Corrector results for a parabolic problem with a memory effect, ESAIM: Math. Model. Numer. Anal., 44 (2010) , 421-454.  doi: 10.1051/m2an/2010008.
      P. Donato  and  E. Jose , Asymptotic behavior of the approximate controls for parabolic equations with interfacial contact resistance, ESAIM: COCV, 21 (2015) , 138-164.  doi: 10.1051/cocv/2014029.
      P. Donato  and  S. Monsurrò , Homogenization of two heat conductors with interfacial contact resistance, Anal. Appl., 2 (2004) , 247-273.  doi: 10.1142/S0219530504000345.
      P. Donato  and  A. Nabil , Homogenization and correctors for the heat equation in perforated domains, Ricerche Mat., 50 (2001) , 115-144. 
      T. Durante , L. Faella  and  C. Perugia , Homogenization and behaviour of optimal controls for the wave equation in domains with oscillating boudary, NoDEA Nonlinear Differential Equations Appl., 14 (2007) , 455-489.  doi: 10.1007/s00030-007-3043-6.
      T. Durante  and  T. A. Mel'nyk , Asymptotic analysis of an optimal control problem involving a thick two-level junction with alternate type of controls, J. Optim. Th. and Appl., 144 (2010) , 205-225.  doi: 10.1007/s10957-009-9604-6.
      T. Durante  and  T. A. Mel'nyk , Homogenization of quasilinear optimal control problems involving a thick multilevel junction of type 3:2:1, ESAIM: Control, Optimisation and Calculus of Variations, 18 (2012) , 583-610.  doi: 10.1051/cocv/2011107.
      L. Faella and S. Monsurr`o, Memory effects arising in the homogenization of composites with inclusions, Topics on Mathematics for Smart System. World Sci. Publ., Hackensack, USA, (2007), 107–121. doi: 10.1142/9789812706874_0008.
      L. Faella  and  C. Perugia , Homogenization of a Ginzburg-Landau problem in a perforated domain with mixed boundary conditions, Bound. Value Probl, 223 (2014) , 1-28.  doi: 10.1186/s13661-014-0223-2.
      L. Faella  and  C. Perugia , Optimal control for evolutionary imperfect transmission problems, Bound. Value Probl, 50 (2015) , 1-16.  doi: 10.1186/s13661-015-0310-z.
      H. C. Hummel , Homogenization for heat transfer in polycristals with interfacial resistances, Appl. Anal., 75 (2000) , 403-424.  doi: 10.1080/00036810008840857.
      J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations Springer-Verlag Berlin Heidelberg New York, 1971.
      J. L. Lions , Contràlabilité Exacte et Homogénéisation, I. Asymptotic Analysis, 1 (1988) , 3-11. 
      J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol I Springer-Verlag Berlin Heidelberg New York, 1972.
      R. Lipton , Heat conduction in fine scale mixtures with interfacial contact resistance, SIAM J. Appl. Math., 58 (1998) , 55-72.  doi: 10.1137/S0036139995295153.
      R. Lipton  and  B. Vernescu , Composite with imperfect interface, Proc. R. Soc. Lond. Ser. A, 452 (1996) , 329-358.  doi: 10.1098/rspa.1996.0018.
      S. Monsurró , Homogenization of a two-component composite with interfacial thermal barrier, Adv. Math. Sci. Appl., 13 (2003) , 43-63. 
      S. Monsurrò , Erratum for the paper ''Homogenization of a two-component composite with interfacial thermal barrier", Adv. Math. Sci. Appl., 14 (2004) , 375-377. 
      S. Monsurrò , Homogenization of a composite with very small inclusions and imperfect interface. Multi scale problems and asymptotic analysis, GAKUTO Internat, Ser. Math. Sci. Appl., Gakkotosho, Tokyo, 24 (2006) , 217-232. 
      L. Tartar, Cours Peccot, Collège de France (March 1977). Partially written in F. Murat, HConvergence, Séminaire d'analyse fonctionnelle et numérique de l'Université d'Alger (1977-78). English translation in Mathematical Modeling of Composite Materials, A. Cherkaev and R. V. Kohon ed., Progress in Nonlinear Differential Equations and their Applications, Birkh¨auser-Verlag, (1997), 21–44.
      E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol Ⅱ, Part A and B Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4612-4838-5.
  • 加载中



Article Metrics

HTML views(1266) PDF downloads(115) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint