-
Previous Article
General decay for a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term
- EECT Home
- This Issue
-
Next Article
Optimal control for a hyperbolic problem in composites with imperfect interface: A memory effect
Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions
1. | Department of Mathematics, Jilin University, Changchun 130012, China |
2. | School of Science, Changchun University, Changchun 130022, China |
In this paper, we discuss the existence of the periodic solutions of a Cahn-Hillard/Allen-Cahn equation which is introduced as a simplification of multiple microscopic mechanisms model in cluster interface evolution. Based on the Schauder type a priori estimates, which here will be obtained by means of a modified Campanato space, we prove the existence of time-periodic solutions in two space dimensions. The uniqueness of solutions is also discussed.
References:
[1] |
Y. Fu and B. Guo,
Time periodic solution of the viscous Camassa-Holm equation, J. Math. Anal. Appl., 313 (2006), 311-321.
doi: 10.1016/j.jmaa.2005.08.073. |
[2] |
M. Giaquinta and M. Struwe,
On the partial regularity of weak solutions of nonlinear parabolic systems, Math. Z., 179 (1982), 437-451.
doi: 10.1007/BF01215058. |
[3] |
G. Karali and T. Ricciardi,
On the convergence of a fourth order evolution equation to the Allen-Cahn equation, Nonlinear Analysis, 72 (2010), 4271-4281.
doi: 10.1016/j.na.2010.02.003. |
[4] |
G. Karali and M. A. Katsoulakis,
The role of multiple microscopic mechanisms in cluster interface evolution, J. Differential Equations, 235 (2007), 418-438.
doi: 10.1016/j.jde.2006.12.021. |
[5] |
G. Karali and Y. Nagase,
On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation, Discrete and Continuous Dynamical Systems Series S, 7 (2014), 127-137.
doi: 10.3934/dcdss.2014.7.127. |
[6] |
C. Liu and Z. Wang,
Time periodic solutions for a sixth order nonlinear parabolic equation in two space dimensions, Commun. Pure Appl. Anal., 13 (2014), 1087-1104.
doi: 10.3934/cpaa.2014.13.1087. |
[7] |
R. Wang,
The Schauder theory of the boundary value problem for parabolic problem equations, Acta Sci. Nature Univ. Jilin., 2 (1964), 35-64.
|
[8] |
Y. Wang and Y. Zhang,
Time-periodic solutions to a nonlinear parabolic type equation of higher order, Acta Math. Appl. Sin., Engl. Ser., 24 (2008), 129-140.
doi: 10.1007/s10255-006-6174-3. |
[9] |
L. Yin, Y. Li, R. Huang and J. Yin,
Time periodic solutions for a Cahn-Hilliard type equation, Mathematical and Computer Modelling, 48 (2008), 11-18.
doi: 10.1016/j.mcm.2007.09.001. |
[10] |
J. Yin, Y. Li and R. Huang,
The Cahn-Hilliard type equations with periodic potentials and sources, Appl. Math. Comput., 211 (2009), 211-221.
doi: 10.1016/j.amc.2009.01.038. |
show all references
References:
[1] |
Y. Fu and B. Guo,
Time periodic solution of the viscous Camassa-Holm equation, J. Math. Anal. Appl., 313 (2006), 311-321.
doi: 10.1016/j.jmaa.2005.08.073. |
[2] |
M. Giaquinta and M. Struwe,
On the partial regularity of weak solutions of nonlinear parabolic systems, Math. Z., 179 (1982), 437-451.
doi: 10.1007/BF01215058. |
[3] |
G. Karali and T. Ricciardi,
On the convergence of a fourth order evolution equation to the Allen-Cahn equation, Nonlinear Analysis, 72 (2010), 4271-4281.
doi: 10.1016/j.na.2010.02.003. |
[4] |
G. Karali and M. A. Katsoulakis,
The role of multiple microscopic mechanisms in cluster interface evolution, J. Differential Equations, 235 (2007), 418-438.
doi: 10.1016/j.jde.2006.12.021. |
[5] |
G. Karali and Y. Nagase,
On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation, Discrete and Continuous Dynamical Systems Series S, 7 (2014), 127-137.
doi: 10.3934/dcdss.2014.7.127. |
[6] |
C. Liu and Z. Wang,
Time periodic solutions for a sixth order nonlinear parabolic equation in two space dimensions, Commun. Pure Appl. Anal., 13 (2014), 1087-1104.
doi: 10.3934/cpaa.2014.13.1087. |
[7] |
R. Wang,
The Schauder theory of the boundary value problem for parabolic problem equations, Acta Sci. Nature Univ. Jilin., 2 (1964), 35-64.
|
[8] |
Y. Wang and Y. Zhang,
Time-periodic solutions to a nonlinear parabolic type equation of higher order, Acta Math. Appl. Sin., Engl. Ser., 24 (2008), 129-140.
doi: 10.1007/s10255-006-6174-3. |
[9] |
L. Yin, Y. Li, R. Huang and J. Yin,
Time periodic solutions for a Cahn-Hilliard type equation, Mathematical and Computer Modelling, 48 (2008), 11-18.
doi: 10.1016/j.mcm.2007.09.001. |
[10] |
J. Yin, Y. Li and R. Huang,
The Cahn-Hilliard type equations with periodic potentials and sources, Appl. Math. Comput., 211 (2009), 211-221.
doi: 10.1016/j.amc.2009.01.038. |
[1] |
Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127 |
[2] |
Quan Wang, Dongming Yan. On the stability and transition of the Cahn-Hilliard/Allen-Cahn system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2607-2620. doi: 10.3934/dcdsb.2020024 |
[3] |
Christopher P. Grant. Grain sizes in the discrete Allen-Cahn and Cahn-Hilliard equations. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 127-146. doi: 10.3934/dcds.2001.7.127 |
[4] |
Alain Miranville, Ramon Quintanilla, Wafa Saoud. Asymptotic behavior of a Cahn-Hilliard/Allen-Cahn system with temperature. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2257-2288. doi: 10.3934/cpaa.2020099 |
[5] |
Shixing Li, Dongming Yan. On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3077-3088. doi: 10.3934/dcdsb.2018301 |
[6] |
Jie Shen, Xiaofeng Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1669-1691. doi: 10.3934/dcds.2010.28.1669 |
[7] |
Alain Miranville, Wafa Saoud, Raafat Talhouk. On the Cahn-Hilliard/Allen-Cahn equations with singular potentials. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3633-3651. doi: 10.3934/dcdsb.2018308 |
[8] |
Ahmad Makki, Alain Miranville. Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 759-775. doi: 10.3934/dcdss.2016027 |
[9] |
Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations and Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517 |
[10] |
Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31 |
[11] |
Irena Pawłow. Thermodynamically consistent Cahn-Hilliard and Allen-Cahn models in elastic solids. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1169-1191. doi: 10.3934/dcds.2006.15.1169 |
[12] |
Juan Wen, Yaling He, Yinnian He, Kun Wang. Stabilized finite element methods based on multiscale enrichment for Allen-Cahn and Cahn-Hilliard equations. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1873-1894. doi: 10.3934/cpaa.2021074 |
[13] |
Gianni Gilardi. On an Allen-Cahn type integrodifferential equation. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 703-709. doi: 10.3934/dcdss.2013.6.703 |
[14] |
Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630 |
[15] |
Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207 |
[16] |
Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013 |
[17] |
Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033 |
[18] |
Isabeau Birindelli, Enrico Valdinoci. On the Allen-Cahn equation in the Grushin plane: A monotone entire solution that is not one-dimensional. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 823-838. doi: 10.3934/dcds.2011.29.823 |
[19] |
Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure and Applied Analysis, 2021, 20 (2) : 763-782. doi: 10.3934/cpaa.2020289 |
[20] |
Xinlong Feng, Yinnian He. On uniform in time $H^2$-regularity of the solution for the 2D Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5387-5400. doi: 10.3934/dcds.2016037 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]