June  2017, 6(2): 277-297. doi: 10.3934/eect.2017015

Periodic solutions for time-dependent subdifferential evolution inclusions

1. 

National Technical University, Department of Mathematics, Zografou Campus, Athens 15780, Greece

2. 

Department of Mathematics, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

3. 

Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764,014700 Bucharest, Romania

* Corresponding author:Vicenţiu D.Rădulescu

Received  May 2016 Revised  January 2017 Published  April 2017

We consider evolution inclusions driven by a time dependent subdifferential plus a multivalued perturbation. We look for periodic solutions. We prove existence results for the convex problem (convex valued perturbation), for the nonconvex problem (nonconvex valued perturbation) and for extremal trajectories (solutions passing from the extreme points of the multivalued perturbation). We also prove a strong relaxation theorem showing that each solution of the convex problem can be approximated in the supremum norm by extremal solutions. Finally we present some examples illustrating these results.

Citation: Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Periodic solutions for time-dependent subdifferential evolution inclusions. Evolution Equations & Control Theory, 2017, 6 (2) : 277-297. doi: 10.3934/eect.2017015
References:
[1]

G. Akagi and U. Stefanelli, Periodic solutions for double nonlinear evolution equations, J. Differential Equations, 251 (2011), 1790-1812.  doi: 10.1016/j.jde.2011.04.014.  Google Scholar

[2]

R. Bader, A topological fixed point index theory for evolution inclusions, Z. Anal. Anwendungen, 20 (2001), 3-15.  doi: 10.4171/ZAA/1001.  Google Scholar

[3]

R. Bader and N. S. Papageorgiou, On the problem of periodic evolution inclusions of the subdifferential type, Z. Anal. Anwendungen, 21 (2002), 963-984.  doi: 10.4171/ZAA/1120.  Google Scholar

[4]

A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math., 90 (1988), 69-86.   Google Scholar

[5]

H. Brezis, Operateurs Maximaux Monotones et Semigroupes de Contractions dans les Espaces de Hilbert North Holland, Amsterdam, 1973.  Google Scholar

[6]

K. C. Chang, The obstacle problem and partial differential equations with discontinuous nonlinearities, Comm. Pure. Appl. Math., 33 (1980), 117-146.  doi: 10.1002/cpa.3160330203.  Google Scholar

[7]

B. Cornet, Existence of slow solutions for a class of differential inclusions, J. Math. Anal. Appl., 96 (1983), 130-147.  doi: 10.1016/0022-247X(83)90032-X.  Google Scholar

[8]

M. Frigon, Systems of first order differential inclusions with maximal monotone terms, Nonlinear Anal., 66 (2007), 2064-2077.  doi: 10.1016/j.na.2006.03.002.  Google Scholar

[9]

L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis Chapman & Hall/CRC, Boca Raton, FL, 2006.  Google Scholar

[10]

L. Gasinski and N. S. Papageorgiou, Exercices in Analysis: Part 1 Springer, New York, 2014.  Google Scholar

[11]

P. Hartman, On boundary value problems for systems of ordinary nonlinear second order differential equations, Trans. Amer. Math. Soc., 96 (1960), 493-509.  doi: 10.1090/S0002-9947-1960-0124553-5.  Google Scholar

[12]

C. Henry, Differential equations with discontinuous right-hand side for planning procedures, J. Economic Theory, 4 (1972), 545-551.  doi: 10.1016/0022-0531(72)90138-X.  Google Scholar

[13]

N. Hirano, Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces, Proc. Amer. Math. Soc., 120 (1994), 185-192.  doi: 10.1090/S0002-9939-1994-1174494-8.  Google Scholar

[14]

S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. Ⅰ: Theory Kluwer Acad. Publ., Dordrecht, The Netherlands, 1997. doi: 10.1007/978-1-4615-6359-4.  Google Scholar

[15]

S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. Ⅱ: Applications Kluwer Acad. Publ., Dordrecht, The Netherlands, 1997. doi: 10.1007/978-1-4615-6359-4.  Google Scholar

[16]

M. Krasnoselskii and A. Pokrovskii, Systems with Hysteresis Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-61302-9.  Google Scholar

[17]

S. Qin and X. Xue, Periodic solutions for nonlinear differential inclusions with multivalued perturbations, J. Math. Anal. Appl., 424 (2015), 988-1005.  doi: 10.1016/j.jmaa.2014.11.057.  Google Scholar

[18]

X. Xue and Y. Cheng, Existence of periodic solutions of nonlinear evolution inclusions in Banach spaces, Nonlinear Anal. Real World Appl., 11 (2010), 459-471.  doi: 10.1016/j.nonrwa.2008.11.020.  Google Scholar

[19]

Y. Yamada, Periodic solutions of certain nonlinear parabolic differential equations in domains with periodically moving boundaries, Nagoya Math. Jour., 70 (1978), 111-123.  doi: 10.1017/S0027763000021814.  Google Scholar

[20]

N. Yamazaki, Attractors of asymptotically periodic multivalued dynamical systems governed by time-dependent subdifferentials, Electronic J. Differential Equations, 2004 (2004), 1-22.   Google Scholar

[21]

S. Yotsutani, Evolutions associated with subdifferentials, J. Math. Soc. Japan, 31 (1978), 623-646.  doi: 10.2969/jmsj/03140623.  Google Scholar

show all references

References:
[1]

G. Akagi and U. Stefanelli, Periodic solutions for double nonlinear evolution equations, J. Differential Equations, 251 (2011), 1790-1812.  doi: 10.1016/j.jde.2011.04.014.  Google Scholar

[2]

R. Bader, A topological fixed point index theory for evolution inclusions, Z. Anal. Anwendungen, 20 (2001), 3-15.  doi: 10.4171/ZAA/1001.  Google Scholar

[3]

R. Bader and N. S. Papageorgiou, On the problem of periodic evolution inclusions of the subdifferential type, Z. Anal. Anwendungen, 21 (2002), 963-984.  doi: 10.4171/ZAA/1120.  Google Scholar

[4]

A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math., 90 (1988), 69-86.   Google Scholar

[5]

H. Brezis, Operateurs Maximaux Monotones et Semigroupes de Contractions dans les Espaces de Hilbert North Holland, Amsterdam, 1973.  Google Scholar

[6]

K. C. Chang, The obstacle problem and partial differential equations with discontinuous nonlinearities, Comm. Pure. Appl. Math., 33 (1980), 117-146.  doi: 10.1002/cpa.3160330203.  Google Scholar

[7]

B. Cornet, Existence of slow solutions for a class of differential inclusions, J. Math. Anal. Appl., 96 (1983), 130-147.  doi: 10.1016/0022-247X(83)90032-X.  Google Scholar

[8]

M. Frigon, Systems of first order differential inclusions with maximal monotone terms, Nonlinear Anal., 66 (2007), 2064-2077.  doi: 10.1016/j.na.2006.03.002.  Google Scholar

[9]

L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis Chapman & Hall/CRC, Boca Raton, FL, 2006.  Google Scholar

[10]

L. Gasinski and N. S. Papageorgiou, Exercices in Analysis: Part 1 Springer, New York, 2014.  Google Scholar

[11]

P. Hartman, On boundary value problems for systems of ordinary nonlinear second order differential equations, Trans. Amer. Math. Soc., 96 (1960), 493-509.  doi: 10.1090/S0002-9947-1960-0124553-5.  Google Scholar

[12]

C. Henry, Differential equations with discontinuous right-hand side for planning procedures, J. Economic Theory, 4 (1972), 545-551.  doi: 10.1016/0022-0531(72)90138-X.  Google Scholar

[13]

N. Hirano, Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces, Proc. Amer. Math. Soc., 120 (1994), 185-192.  doi: 10.1090/S0002-9939-1994-1174494-8.  Google Scholar

[14]

S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. Ⅰ: Theory Kluwer Acad. Publ., Dordrecht, The Netherlands, 1997. doi: 10.1007/978-1-4615-6359-4.  Google Scholar

[15]

S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. Ⅱ: Applications Kluwer Acad. Publ., Dordrecht, The Netherlands, 1997. doi: 10.1007/978-1-4615-6359-4.  Google Scholar

[16]

M. Krasnoselskii and A. Pokrovskii, Systems with Hysteresis Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-61302-9.  Google Scholar

[17]

S. Qin and X. Xue, Periodic solutions for nonlinear differential inclusions with multivalued perturbations, J. Math. Anal. Appl., 424 (2015), 988-1005.  doi: 10.1016/j.jmaa.2014.11.057.  Google Scholar

[18]

X. Xue and Y. Cheng, Existence of periodic solutions of nonlinear evolution inclusions in Banach spaces, Nonlinear Anal. Real World Appl., 11 (2010), 459-471.  doi: 10.1016/j.nonrwa.2008.11.020.  Google Scholar

[19]

Y. Yamada, Periodic solutions of certain nonlinear parabolic differential equations in domains with periodically moving boundaries, Nagoya Math. Jour., 70 (1978), 111-123.  doi: 10.1017/S0027763000021814.  Google Scholar

[20]

N. Yamazaki, Attractors of asymptotically periodic multivalued dynamical systems governed by time-dependent subdifferentials, Electronic J. Differential Equations, 2004 (2004), 1-22.   Google Scholar

[21]

S. Yotsutani, Evolutions associated with subdifferentials, J. Math. Soc. Japan, 31 (1978), 623-646.  doi: 10.2969/jmsj/03140623.  Google Scholar

[1]

Asadollah Aghajani. Regularity of extremal solutions of semilinear elliptic problems with non-convex nonlinearities on general domains. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3521-3530. doi: 10.3934/dcds.2017150

[2]

Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311

[3]

Huijiang Zhao, Yinchuan Zhao. Convergence to strong nonlinear rarefaction waves for global smooth solutions of $p-$system with relaxation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1243-1262. doi: 10.3934/dcds.2003.9.1243

[4]

Sophie Guillaume. Evolution equations governed by the subdifferential of a convex composite function in finite dimensional spaces. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 23-52. doi: 10.3934/dcds.1996.2.23

[5]

Yaoping Chen, Jianqing Chen. Existence of multiple positive weak solutions and estimates for extremal values for a class of concave-convex elliptic problems with an inverse-square potential. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1531-1552. doi: 10.3934/cpaa.2017073

[6]

Tong Li, Hui Yin. Convergence rate to strong boundary layer solutions for generalized BBM-Burgers equations with non-convex flux. Communications on Pure & Applied Analysis, 2014, 13 (2) : 835-858. doi: 10.3934/cpaa.2014.13.835

[7]

Tomáš Roubíček. On certain convex compactifications for relaxation in evolution problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 467-482. doi: 10.3934/dcdss.2011.4.467

[8]

Jean-François Babadjian, Clément Mifsud, Nicolas Seguin. Relaxation approximation of Friedrichs' systems under convex constraints. Networks & Heterogeneous Media, 2016, 11 (2) : 223-237. doi: 10.3934/nhm.2016.11.223

[9]

Olivier Goubet. Regularity of extremal solutions of a Liouville system. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 339-345. doi: 10.3934/dcdss.2019023

[10]

Ruiliang Zhang, Xavier Bresson, Tony F. Chan, Xue-Cheng Tai. Four color theorem and convex relaxation for image segmentation with any number of regions. Inverse Problems & Imaging, 2013, 7 (3) : 1099-1113. doi: 10.3934/ipi.2013.7.1099

[11]

Olexiy V. Kapustyan, Pavlo O. Kasyanov, José Valero, Mikhail Z. Zgurovsky. Attractors of multivalued semi-flows generated by solutions of optimal control problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1229-1242. doi: 10.3934/dcdsb.2019013

[12]

Mostafa Fazly. Regularity of extremal solutions of nonlocal elliptic systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 107-131. doi: 10.3934/dcds.2020005

[13]

Vy Khoi Le. Existence and enclosure of solutions to noncoercive systems of inequalities with multivalued mappings and non-power growths. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 255-276. doi: 10.3934/dcds.2013.33.255

[14]

Craig Cowan, Pierpaolo Esposito, Nassif Ghoussoub. Regularity of extremal solutions in fourth order nonlinear eigenvalue problems on general domains. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1033-1050. doi: 10.3934/dcds.2010.28.1033

[15]

Futoshi Takahashi. Singular extremal solutions to a Liouville-Gelfand type problem with exponential nonlinearity. Conference Publications, 2015, 2015 (special) : 1025-1033. doi: 10.3934/proc.2015.1025

[16]

Gawtum Namah, Mohammed Sbihi. A notion of extremal solutions for time periodic Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 647-664. doi: 10.3934/dcdsb.2010.13.647

[17]

Zongming Guo, Juncheng Wei. Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2561-2580. doi: 10.3934/dcds.2014.34.2561

[18]

Ruyun Ma, Yanqiong Lu. Disconjugacy and extremal solutions of nonlinear third-order equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1223-1236. doi: 10.3934/cpaa.2014.13.1223

[19]

Xavier Cabré, Manel Sanchón. Semi-stable and extremal solutions of reaction equations involving the $p$-Laplacian. Communications on Pure & Applied Analysis, 2007, 6 (1) : 43-67. doi: 10.3934/cpaa.2007.6.43

[20]

Shijin Deng, Weike Wang. Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1107-1138. doi: 10.3934/dcds.2011.30.1107

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (8)
  • HTML views (4)
  • Cited by (3)

[Back to Top]