June  2017, 6(2): 299-318. doi: 10.3934/eect.2017016

A note on dimension reduction for unbounded integrals with periodic microstructure via the unfolding method for slender domains

Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno, via Giovanni Paolo Ⅱ, 132,84084 Fisciano (SA), Italy

Received  December 2016 Revised  January 2017 Published  April 2017

A 3D-2D dimension reduction for a nonhomogeneous constrained energy is performed in the realm of $Γ$-convergence, and two-scale convergence for slender domains, providing an integral representation for the limit functional. Applications to supremal functionals are also given.

Citation: Elvira Zappale. A note on dimension reduction for unbounded integrals with periodic microstructure via the unfolding method for slender domains. Evolution Equations & Control Theory, 2017, 6 (2) : 299-318. doi: 10.3934/eect.2017016
References:
[1]

E. AcerbiG. Buttazzo and D. Percivale, A variational definition of the strain energy for an elastic string, Elasticity J., 25 (1991), 137-148.  doi: 10.1007/BF00042462.  Google Scholar

[2]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.  doi: 10.1137/0523084.  Google Scholar

[3]

J.-F. BabadjianF. Prinari and E. Zappale, Dimensional reduction for supremal functionals, Discrete Contin. Dyn. Syst., 32 (2012), 1503-1535.  doi: 10.3934/dcds.2012.32.1503.  Google Scholar

[4]

E. N. BarronR. R. Jensen and C. Y. Wang, Lower semicontinuity of L1 functionals, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 495-517.  doi: 10.1016/S0294-1449(01)00070-1.  Google Scholar

[5]

A. BraidesI. Fonseca and G. Francfort, 3D-2D asymptotic analysis for inhomogeneous thin films, Indiana Univ. Math. J., 49 (2000), 1367-1404.  doi: 10.1512/iumj.2000.49.1822.  Google Scholar

[6]

A. BrianiF. Prinari and A. Garroni, Homogenization of L1 functionals, Math. Models Methods Appl. Sci., 14 (2004), 1784.  doi: 10.1142/S0218202504003817.  Google Scholar

[7]

L. Carbone and R. De Arcangelis, Unbounded Functionals in the Calculus of Variations. Representation, Relaxation and Homogenization, Chapman and Hall/CRC Monogr. Surv. Pure Appl. Math. 125, Chapman and Hall/CRC Boca Raton, FL, 2001.  Google Scholar

[8]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer-Verlag, Berlin, 1977.  Google Scholar

[9]

D. CioranescuA. Damlamian and R. De Arcangelis, Homogenization of integrals with pointwise gradient constraints via the periodic unfolding method, Ric. Mat., 44 (2006), 31-53.  doi: 10.1007/s11587-006-0003-0.  Google Scholar

[10]

D. CioranescuA. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40 (2008), 1585-1620.  doi: 10.1137/080713148.  Google Scholar

[11]

G. Dal Maso, An Introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA, 1983. doi: 10.1007/978-1-4612-0327-8.  Google Scholar

[12]

A. Davini and M. Ponsiglione, Homogenization of two-phase metrics and applications, J. Anal. Math., 103 (2007), 157-196.  doi: 10.1007/s11854-008-0005-9.  Google Scholar

[13]

C. Kreisbeck and S. Kroemer, Heterogeneous thin films: Combining homogenization and dimension reduction with directors, SIAM J. Math. Anal., 48 (2016), 785-820.  doi: 10.1137/15M1032557.  Google Scholar

[14]

H. Le Dret and A. Raoult, The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., 74 (1995), 548-578.   Google Scholar

[15]

S. Neukamm, Homogenization, Linearization and Dimension Reduction in Elasticity with Variational Methods, Dissertation Technische Universität München, 2010. Google Scholar

[16]

A. M. Ribeiro and E. Zappale, Existence of minimizers for nonlevel convex supremal functionals, SIAM J. Control Optim., 52 (2014), 3341-3370.  doi: 10.1137/13094390X.  Google Scholar

[17]

E. Zappale, A remark on dimension reduction for supremal functionals: The case with convex domains, Differential Integral Equations, 26 (2013), 1077-1090.   Google Scholar

show all references

References:
[1]

E. AcerbiG. Buttazzo and D. Percivale, A variational definition of the strain energy for an elastic string, Elasticity J., 25 (1991), 137-148.  doi: 10.1007/BF00042462.  Google Scholar

[2]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.  doi: 10.1137/0523084.  Google Scholar

[3]

J.-F. BabadjianF. Prinari and E. Zappale, Dimensional reduction for supremal functionals, Discrete Contin. Dyn. Syst., 32 (2012), 1503-1535.  doi: 10.3934/dcds.2012.32.1503.  Google Scholar

[4]

E. N. BarronR. R. Jensen and C. Y. Wang, Lower semicontinuity of L1 functionals, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 495-517.  doi: 10.1016/S0294-1449(01)00070-1.  Google Scholar

[5]

A. BraidesI. Fonseca and G. Francfort, 3D-2D asymptotic analysis for inhomogeneous thin films, Indiana Univ. Math. J., 49 (2000), 1367-1404.  doi: 10.1512/iumj.2000.49.1822.  Google Scholar

[6]

A. BrianiF. Prinari and A. Garroni, Homogenization of L1 functionals, Math. Models Methods Appl. Sci., 14 (2004), 1784.  doi: 10.1142/S0218202504003817.  Google Scholar

[7]

L. Carbone and R. De Arcangelis, Unbounded Functionals in the Calculus of Variations. Representation, Relaxation and Homogenization, Chapman and Hall/CRC Monogr. Surv. Pure Appl. Math. 125, Chapman and Hall/CRC Boca Raton, FL, 2001.  Google Scholar

[8]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer-Verlag, Berlin, 1977.  Google Scholar

[9]

D. CioranescuA. Damlamian and R. De Arcangelis, Homogenization of integrals with pointwise gradient constraints via the periodic unfolding method, Ric. Mat., 44 (2006), 31-53.  doi: 10.1007/s11587-006-0003-0.  Google Scholar

[10]

D. CioranescuA. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40 (2008), 1585-1620.  doi: 10.1137/080713148.  Google Scholar

[11]

G. Dal Maso, An Introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA, 1983. doi: 10.1007/978-1-4612-0327-8.  Google Scholar

[12]

A. Davini and M. Ponsiglione, Homogenization of two-phase metrics and applications, J. Anal. Math., 103 (2007), 157-196.  doi: 10.1007/s11854-008-0005-9.  Google Scholar

[13]

C. Kreisbeck and S. Kroemer, Heterogeneous thin films: Combining homogenization and dimension reduction with directors, SIAM J. Math. Anal., 48 (2016), 785-820.  doi: 10.1137/15M1032557.  Google Scholar

[14]

H. Le Dret and A. Raoult, The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., 74 (1995), 548-578.   Google Scholar

[15]

S. Neukamm, Homogenization, Linearization and Dimension Reduction in Elasticity with Variational Methods, Dissertation Technische Universität München, 2010. Google Scholar

[16]

A. M. Ribeiro and E. Zappale, Existence of minimizers for nonlevel convex supremal functionals, SIAM J. Control Optim., 52 (2014), 3341-3370.  doi: 10.1137/13094390X.  Google Scholar

[17]

E. Zappale, A remark on dimension reduction for supremal functionals: The case with convex domains, Differential Integral Equations, 26 (2013), 1077-1090.   Google Scholar

[1]

Jean-François Babadjian, Francesca Prinari, Elvira Zappale. Dimensional reduction for supremal functionals. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1503-1535. doi: 10.3934/dcds.2012.32.1503

[2]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. Homogenization of variational functionals with nonstandard growth in perforated domains. Networks & Heterogeneous Media, 2010, 5 (2) : 189-215. doi: 10.3934/nhm.2010.5.189

[3]

Guillaume Bal, Olivier Pinaud, Lenya Ryzhik. On the stability of some imaging functionals. Inverse Problems & Imaging, 2016, 10 (3) : 585-616. doi: 10.3934/ipi.2016013

[4]

P. Di Gironimo, L. D’Onofrio. On the regularity of minimizers to degenerate functionals. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1311-1318. doi: 10.3934/cpaa.2010.9.1311

[5]

Victor Berdichevsky. Distribution of minimum values of stochastic functionals. Networks & Heterogeneous Media, 2008, 3 (3) : 437-460. doi: 10.3934/nhm.2008.3.437

[6]

Guillaume Bal, Chenxi Guo, Francçois Monard. Linearized internal functionals for anisotropic conductivities. Inverse Problems & Imaging, 2014, 8 (1) : 1-22. doi: 10.3934/ipi.2014.8.1

[7]

Menita Carozza, Gioconda Moscariello, Antonia Passarelli. Higher integrability for minimizers of anisotropic functionals. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 43-55. doi: 10.3934/dcdsb.2009.11.43

[8]

Patrick Cummings, C. Eugene Wayne. Modified energy functionals and the NLS approximation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1295-1321. doi: 10.3934/dcds.2017054

[9]

Nassif Ghoussoub. Superposition of selfdual functionals in non-homogeneous boundary value problems and differential systems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 187-220. doi: 10.3934/dcds.2008.21.187

[10]

Annibale Magni, Matteo Novaga. A note on non lower semicontinuous perimeter functionals on partitions. Networks & Heterogeneous Media, 2016, 11 (3) : 501-508. doi: 10.3934/nhm.2016006

[11]

Angelo B. Mingarelli. Nonlinear functionals in oscillation theory of matrix differential systems. Communications on Pure & Applied Analysis, 2004, 3 (1) : 75-84. doi: 10.3934/cpaa.2004.3.75

[12]

Yoji Otani, Tsuyoshi Kajiwara, Toru Sasaki. Lyapunov functionals for multistrain models with infinite delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 507-536. doi: 10.3934/dcdsb.2017025

[13]

Naoufel Ben Abdallah, Irene M. Gamba, Giuseppe Toscani. On the minimization problem of sub-linear convex functionals. Kinetic & Related Models, 2011, 4 (4) : 857-871. doi: 10.3934/krm.2011.4.857

[14]

Guangcun Lu. The splitting lemmas for nonsmooth functionals on Hilbert spaces I. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2939-2990. doi: 10.3934/dcds.2013.33.2939

[15]

René Henrion. Gradient estimates for Gaussian distribution functions: application to probabilistically constrained optimization problems. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 655-668. doi: 10.3934/naco.2012.2.655

[16]

Thaís Jordão, Xingping Sun. General types of spherical mean operators and $K$-functionals of fractional orders. Communications on Pure & Applied Analysis, 2015, 14 (3) : 743-757. doi: 10.3934/cpaa.2015.14.743

[17]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[18]

Cristian Bereanu, Petru Jebelean. Multiple critical points for a class of periodic lower semicontinuous functionals. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 47-66. doi: 10.3934/dcds.2013.33.47

[19]

Alessandro Ferriero. Action functionals that attain regular minima in presence of energy gaps. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 675-690. doi: 10.3934/dcds.2007.19.675

[20]

Yoji Otani, Tsuyoshi Kajiwara, Toru Sasaki. Lyapunov functionals for virus-immune models with infinite delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3093-3114. doi: 10.3934/dcdsb.2015.20.3093

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (8)
  • HTML views (5)
  • Cited by (0)

Other articles
by authors

[Back to Top]