• Previous Article
    $\mathbb{L}^p-$solutions of the stochastic Navier-Stokes equations subject to Lévy noise with $\mathbb{L}^m(\mathbb{R}^m)$ initial data
  • EECT Home
  • This Issue
  • Next Article
    Local exact controllability to trajectories of the magneto-micropolar fluid equations
September  2017, 6(3): 381-407. doi: 10.3934/eect.2017020

Null controllability for parabolic equations with dynamic boundary conditions

1. 

Cadi Ayyad University, LMDP, UMMISCO (IRD-UPMC) B.P. 2390, Marrakesh, Morocco

2. 

Institut für Mathematik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany

3. 

Department of Mathematics, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

Received  August 2015 Revised  March 2017 Published  July 2017

Fund Project: We thank the Deutsche Forschungsgemeinschaft which supported this research within the grants ME 3848/1-1 and SCHN 570/4-1. M.M. thanks L.M. for a very pleasant stay in Marrakesh, where parts of this work originated.

We prove null controllability for linear and semilinear heat equations with dynamic boundary conditions of surface diffusion type. The results are based on a new Carleman estimate for this type of boundary conditions.

Citation: Lahcen Maniar, Martin Meyries, Roland Schnaubelt. Null controllability for parabolic equations with dynamic boundary conditions. Evolution Equations and Control Theory, 2017, 6 (3) : 381-407. doi: 10.3934/eect.2017020
References:
[1]

F. Alabau-BoussouiraP. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., 6 (2006), 161-204.  doi: 10.1007/s00028-006-0222-6.

[2]

I. Bejenaru, J. I. Díaz and I. I. Vrabie, An abstract approximate controllability result and applications to elliptic and parabolic systems with dynamic boundary conditions, Electron. J. Differential Equations, (2001), 19 pp.

[3]

D. BotheJ. Prüss and G. Simonett, Well-posedness of a two-phase flow with soluble surfactant, In: Nonlinear Elliptic and Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Basel, 64 (2005), 37-62.  doi: 10.1007/3-7643-7385-7_3.

[4]

D. ChaeO. Yu. Imanuvilov and S. M. Kim, Exact controllability for semilinear parabolic equations with Neumann boundary conditions, J. Dynam. Control Systems, 2 (1996), 449-483.  doi: 10.1007/BF02254698.

[5]

R. DenkJ. Prüss and R. Zacher, Maximal Lp–regularity of parabolic problems with boundary dynamics of relaxation type, J. Funct. Anal., 255 (2008), 3149-3187.  doi: 10.1016/j.jfa.2008.07.012.

[6]

A. DoubovaE. Fernández-CaraM. González-Burgos and E. Zuazua, On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim., 41 (2002), 798-819.  doi: 10.1137/S0363012901386465.

[7]

A. F. M. ter ElstM. Meyries and J. Rehberg, Parabolic equations with dynamical boundary conditions and source terms on interfaces, Ann. Mat. Pura Appl. (4), 193 (2014), 1295-1318.  doi: 10.1007/s10231-013-0329-7.

[8]

A. FaviniJ. A. GoldsteinG. R. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary condition, J. Evol. Equ., 2 (2002), 1-19.  doi: 10.1007/s00028-002-8077-y.

[9]

E. Fernández-CaraM. González-BurgosS. Guerrero and J.-P. Puel, Null controllability of the heat equation with Fourier boundary conditions: The linear case, ESAIM Control Optim. Calc. Var., 12 (2006), 442-465.  doi: 10.1051/cocv:2006010.

[10]

E. Fernández-CaraM. González-BurgosS. Guerrero and J.-P. Puel, Exact controllability to the trajectories of the heat equation with Fourier boundary conditions: The semilinear case, ESAIM Control Optim. Calc. Var, 12 (2006), 466-483.  doi: 10.1051/cocv:2006011.

[11]

E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability, SIAM J. Control Optim., 45 (2006), 1395-1446.  doi: 10.1137/S0363012904439696.

[12]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 583-616.  doi: 10.1016/S0294-1449(00)00117-7.

[13]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Note Series 34 Research Institute of Mathematics, Seoul National University, Seoul, 1996.

[14]

C. G. Gal and M. Grasselli, The non-isothermal Allen-Cahn equation with dynamic boundary conditions, Discrete Contin. Dyn. Syst., 22 (2008), 1009-1040.  doi: 10.3934/dcds.2008.22.1009.

[15]

A. Glitzky, An electronic model for solar cells including active interfaces and energy resolved defect densities, SIAM J. Math. Anal., 44 (2012), 3874-3900.  doi: 10.1137/110858847.

[16]

A. Glitzky and A. Mielke, A gradient structure for systems coupling reaction-diffusion effects in bulk and interfaces, Z. Angew. Math. Physik, 64 (2013), 29-52.  doi: 10.1007/s00033-012-0207-y.

[17]

G. R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Diff. Equ., 11 (2006), 457-480. 

[18]

D. HömbergK. Krumbiegel and J. Rehberg, Optimal control of a parabolic equation with dynamic boundary condition, Appl. Math. Optim., 67 (2013), 3-31.  doi: 10.1007/s00245-012-9178-9.

[19]

O. Yu. Imanuvilov, Controllability of parabolic equations, Sb. Math., 186 (1995), 879-900.  doi: 10.1070/SM1995v186n06ABEH000047.

[20]

J. Jost, Riemannian Geometry and Geometric Analysis, Fifth edition, Springer-Verlag, Berlin, 2008.

[21]

T. Kato, Perturbation Theory for Linear Operators, Reprint of the 1980 edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.

[22]

M. Kumpf and G. Nickel, Dynamic boundary conditions and boundary control for the onedimensional heat equation, J. Dynam. Control Systems, 10 (2004), 213-225.  doi: 10.1023/B:JODS.0000024122.71407.83.

[23]

O. A. Ladyzhenskaya, V. Solonnikov and N. Ural'tseva, Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, Providence (RI), 1968. Reprinted with corrections, 1988.

[24]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, 20 (1995), 335-356.  doi: 10.1080/03605309508821097.

[25]

A. Lunardi, Interpolation Theory, Second edition, Edizioni della Normale, Pisa, 2009.

[26]

M. Meyries, Maximal Regularity in Weighted Spaces, Nonlinear Boundary Conditions, and Global Attractors, Ph. D. thesis, Karlsruhe Institute of Technology, 2010.

[27]

A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions, Math. Methods Appl. Sci., 28 (2005), 709-735.  doi: 10.1002/mma.590.

[28]

J. Prüss and R. Schnaubelt, Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time, J. Math. Anal. Appl., 256 (2001), 405-430.  doi: 10.1006/jmaa.2000.7247.

[29]

J. Simon, Compact sets in the space Lp(0, T; B), Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.

[30]

J. Sprekels and H. Wu, A note on parabolic equation with nonlinear dynamical boundary condition, Nonlinear Analysis, 72 (2010), 3028-3048.  doi: 10.1016/j.na.2009.11.043.

[31]

M. E. Taylor, Partial Differential Equations. Basic theory, Springer–Verlag, New York, 1996. doi: 10.1007/978-1-4684-9320-7.

[32]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, , J. A. Barth, Heidelberg, 1995.

[33]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.

[34]

J. L. Vázquez and E. Vitillaro, Heat equation with dynamical boundary conditions of reactivediffusive type, J. Differential Equations, 250 (2011), 2143-2161.  doi: 10.1016/j.jde.2010.12.012.

[35]

J. Zabczyk, Mathematical Control Theory, Birkhäuser Boston, Inc., Boston, MA, 2008. doi: 10.1007/978-0-8176-4733-9.

show all references

References:
[1]

F. Alabau-BoussouiraP. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., 6 (2006), 161-204.  doi: 10.1007/s00028-006-0222-6.

[2]

I. Bejenaru, J. I. Díaz and I. I. Vrabie, An abstract approximate controllability result and applications to elliptic and parabolic systems with dynamic boundary conditions, Electron. J. Differential Equations, (2001), 19 pp.

[3]

D. BotheJ. Prüss and G. Simonett, Well-posedness of a two-phase flow with soluble surfactant, In: Nonlinear Elliptic and Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Basel, 64 (2005), 37-62.  doi: 10.1007/3-7643-7385-7_3.

[4]

D. ChaeO. Yu. Imanuvilov and S. M. Kim, Exact controllability for semilinear parabolic equations with Neumann boundary conditions, J. Dynam. Control Systems, 2 (1996), 449-483.  doi: 10.1007/BF02254698.

[5]

R. DenkJ. Prüss and R. Zacher, Maximal Lp–regularity of parabolic problems with boundary dynamics of relaxation type, J. Funct. Anal., 255 (2008), 3149-3187.  doi: 10.1016/j.jfa.2008.07.012.

[6]

A. DoubovaE. Fernández-CaraM. González-Burgos and E. Zuazua, On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim., 41 (2002), 798-819.  doi: 10.1137/S0363012901386465.

[7]

A. F. M. ter ElstM. Meyries and J. Rehberg, Parabolic equations with dynamical boundary conditions and source terms on interfaces, Ann. Mat. Pura Appl. (4), 193 (2014), 1295-1318.  doi: 10.1007/s10231-013-0329-7.

[8]

A. FaviniJ. A. GoldsteinG. R. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary condition, J. Evol. Equ., 2 (2002), 1-19.  doi: 10.1007/s00028-002-8077-y.

[9]

E. Fernández-CaraM. González-BurgosS. Guerrero and J.-P. Puel, Null controllability of the heat equation with Fourier boundary conditions: The linear case, ESAIM Control Optim. Calc. Var., 12 (2006), 442-465.  doi: 10.1051/cocv:2006010.

[10]

E. Fernández-CaraM. González-BurgosS. Guerrero and J.-P. Puel, Exact controllability to the trajectories of the heat equation with Fourier boundary conditions: The semilinear case, ESAIM Control Optim. Calc. Var, 12 (2006), 466-483.  doi: 10.1051/cocv:2006011.

[11]

E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability, SIAM J. Control Optim., 45 (2006), 1395-1446.  doi: 10.1137/S0363012904439696.

[12]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 583-616.  doi: 10.1016/S0294-1449(00)00117-7.

[13]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Note Series 34 Research Institute of Mathematics, Seoul National University, Seoul, 1996.

[14]

C. G. Gal and M. Grasselli, The non-isothermal Allen-Cahn equation with dynamic boundary conditions, Discrete Contin. Dyn. Syst., 22 (2008), 1009-1040.  doi: 10.3934/dcds.2008.22.1009.

[15]

A. Glitzky, An electronic model for solar cells including active interfaces and energy resolved defect densities, SIAM J. Math. Anal., 44 (2012), 3874-3900.  doi: 10.1137/110858847.

[16]

A. Glitzky and A. Mielke, A gradient structure for systems coupling reaction-diffusion effects in bulk and interfaces, Z. Angew. Math. Physik, 64 (2013), 29-52.  doi: 10.1007/s00033-012-0207-y.

[17]

G. R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Diff. Equ., 11 (2006), 457-480. 

[18]

D. HömbergK. Krumbiegel and J. Rehberg, Optimal control of a parabolic equation with dynamic boundary condition, Appl. Math. Optim., 67 (2013), 3-31.  doi: 10.1007/s00245-012-9178-9.

[19]

O. Yu. Imanuvilov, Controllability of parabolic equations, Sb. Math., 186 (1995), 879-900.  doi: 10.1070/SM1995v186n06ABEH000047.

[20]

J. Jost, Riemannian Geometry and Geometric Analysis, Fifth edition, Springer-Verlag, Berlin, 2008.

[21]

T. Kato, Perturbation Theory for Linear Operators, Reprint of the 1980 edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.

[22]

M. Kumpf and G. Nickel, Dynamic boundary conditions and boundary control for the onedimensional heat equation, J. Dynam. Control Systems, 10 (2004), 213-225.  doi: 10.1023/B:JODS.0000024122.71407.83.

[23]

O. A. Ladyzhenskaya, V. Solonnikov and N. Ural'tseva, Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, Providence (RI), 1968. Reprinted with corrections, 1988.

[24]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, 20 (1995), 335-356.  doi: 10.1080/03605309508821097.

[25]

A. Lunardi, Interpolation Theory, Second edition, Edizioni della Normale, Pisa, 2009.

[26]

M. Meyries, Maximal Regularity in Weighted Spaces, Nonlinear Boundary Conditions, and Global Attractors, Ph. D. thesis, Karlsruhe Institute of Technology, 2010.

[27]

A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions, Math. Methods Appl. Sci., 28 (2005), 709-735.  doi: 10.1002/mma.590.

[28]

J. Prüss and R. Schnaubelt, Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time, J. Math. Anal. Appl., 256 (2001), 405-430.  doi: 10.1006/jmaa.2000.7247.

[29]

J. Simon, Compact sets in the space Lp(0, T; B), Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.

[30]

J. Sprekels and H. Wu, A note on parabolic equation with nonlinear dynamical boundary condition, Nonlinear Analysis, 72 (2010), 3028-3048.  doi: 10.1016/j.na.2009.11.043.

[31]

M. E. Taylor, Partial Differential Equations. Basic theory, Springer–Verlag, New York, 1996. doi: 10.1007/978-1-4684-9320-7.

[32]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, , J. A. Barth, Heidelberg, 1995.

[33]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.

[34]

J. L. Vázquez and E. Vitillaro, Heat equation with dynamical boundary conditions of reactivediffusive type, J. Differential Equations, 250 (2011), 2143-2161.  doi: 10.1016/j.jde.2010.12.012.

[35]

J. Zabczyk, Mathematical Control Theory, Birkhäuser Boston, Inc., Boston, MA, 2008. doi: 10.1007/978-0-8176-4733-9.

[1]

Abdelaziz Khoutaibi, Lahcen Maniar. Null controllability for a heat equation with dynamic boundary conditions and drift terms. Evolution Equations and Control Theory, 2020, 9 (2) : 535-559. doi: 10.3934/eect.2020023

[2]

Abdelaziz Khoutaibi, Lahcen Maniar, Omar Oukdach. Null controllability for semilinear heat equation with dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1525-1546. doi: 10.3934/dcdss.2022087

[3]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations and Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[4]

Chunpeng Wang, Yanan Zhou, Runmei Du, Qiang Liu. Carleman estimate for solutions to a degenerate convection-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4207-4222. doi: 10.3934/dcdsb.2018133

[5]

Idriss Boutaayamou, Lahcen Maniar, Omar Oukdach. Stackelberg-Nash null controllability of heat equation with general dynamic boundary conditions. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021044

[6]

Peng Gao. Global Carleman estimate for the Kawahara equation and its applications. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1853-1874. doi: 10.3934/cpaa.2018088

[7]

Ciprian G. Gal, Mahamadi Warma. Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions. Evolution Equations and Control Theory, 2016, 5 (1) : 61-103. doi: 10.3934/eect.2016.5.61

[8]

Davide Guidetti. Classical solutions to quasilinear parabolic problems with dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 717-736. doi: 10.3934/dcdss.2016024

[9]

Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Dynamic boundary conditions as limit of singularly perturbed parabolic problems. Conference Publications, 2011, 2011 (Special) : 737-746. doi: 10.3934/proc.2011.2011.737

[10]

Genni Fragnelli. Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 687-701. doi: 10.3934/dcdss.2013.6.687

[11]

Davide Guidetti. Parabolic problems with general Wentzell boundary conditions and diffusion on the boundary. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1401-1417. doi: 10.3934/cpaa.2016.15.1401

[12]

El Mustapha Ait Ben Hassi, Farid Ammar khodja, Abdelkarim Hajjaj, Lahcen Maniar. Carleman Estimates and null controllability of coupled degenerate systems. Evolution Equations and Control Theory, 2013, 2 (3) : 441-459. doi: 10.3934/eect.2013.2.441

[13]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[14]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control and Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[15]

Giuseppe Floridia, Hiroshi Takase, Masahiro Yamamoto. A Carleman estimate and an energy method for a first-order symmetric hyperbolic system. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022016

[16]

J. F. Padial. Existence and estimate of the location of the free-boundary for a non local inverse elliptic-parabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 1176-1185. doi: 10.3934/proc.2011.2011.1176

[17]

Tatsien Li, Bopeng Rao, Zhiqiang Wang. Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 243-257. doi: 10.3934/dcds.2010.28.243

[18]

Jong-Shenq Guo, Satoshi Sasayama, Chi-Jen Wang. Blowup rate estimate for a system of semilinear parabolic equations. Communications on Pure and Applied Analysis, 2009, 8 (2) : 711-718. doi: 10.3934/cpaa.2009.8.711

[19]

Gary Lieberman. A new regularity estimate for solutions of singular parabolic equations. Conference Publications, 2005, 2005 (Special) : 605-610. doi: 10.3934/proc.2005.2005.605

[20]

Farid Ammar Khodja, Cherif Bouzidi, Cédric Dupaix, Lahcen Maniar. Null controllability of retarded parabolic equations. Mathematical Control and Related Fields, 2014, 4 (1) : 1-15. doi: 10.3934/mcrf.2014.4.1

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (227)
  • HTML views (81)
  • Cited by (2)

[Back to Top]