We prove null controllability for linear and semilinear heat equations with dynamic boundary conditions of surface diffusion type. The results are based on a new Carleman estimate for this type of boundary conditions.
Citation: |
[1] |
F. Alabau-Boussouira, P. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., 6 (2006), 161-204.
doi: 10.1007/s00028-006-0222-6.![]() ![]() ![]() |
[2] |
I. Bejenaru, J. I. Díaz and I. I. Vrabie, An abstract approximate controllability result and applications to elliptic and parabolic systems with dynamic boundary conditions, Electron. J. Differential Equations, (2001), 19 pp.
![]() ![]() |
[3] |
D. Bothe, J. Prüss and G. Simonett, Well-posedness of a two-phase flow with soluble surfactant, In: Nonlinear Elliptic and Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Basel, 64 (2005), 37-62.
doi: 10.1007/3-7643-7385-7_3.![]() ![]() ![]() |
[4] |
D. Chae, O. Yu. Imanuvilov and S. M. Kim, Exact controllability for semilinear parabolic equations with Neumann boundary conditions, J. Dynam. Control Systems, 2 (1996), 449-483.
doi: 10.1007/BF02254698.![]() ![]() ![]() |
[5] |
R. Denk, J. Prüss and R. Zacher, Maximal Lp–regularity of parabolic problems with boundary dynamics of relaxation type, J. Funct. Anal., 255 (2008), 3149-3187.
doi: 10.1016/j.jfa.2008.07.012.![]() ![]() ![]() |
[6] |
A. Doubova, E. Fernández-Cara, M. González-Burgos and E. Zuazua, On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim., 41 (2002), 798-819.
doi: 10.1137/S0363012901386465.![]() ![]() ![]() |
[7] |
A. F. M. ter Elst, M. Meyries and J. Rehberg, Parabolic equations with dynamical boundary conditions and source terms on interfaces, Ann. Mat. Pura Appl. (4), 193 (2014), 1295-1318.
doi: 10.1007/s10231-013-0329-7.![]() ![]() ![]() |
[8] |
A. Favini, J. A. Goldstein, G. R. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary condition, J. Evol. Equ., 2 (2002), 1-19.
doi: 10.1007/s00028-002-8077-y.![]() ![]() ![]() |
[9] |
E. Fernández-Cara, M. González-Burgos, S. Guerrero and J.-P. Puel, Null controllability of
the heat equation with Fourier boundary conditions: The linear case, ESAIM Control Optim.
Calc. Var., 12 (2006), 442-465.
doi: 10.1051/cocv:2006010.![]() ![]() ![]() |
[10] |
E. Fernández-Cara, M. González-Burgos, S. Guerrero and J.-P. Puel, Exact controllability to
the trajectories of the heat equation with Fourier boundary conditions: The semilinear case, ESAIM Control Optim. Calc. Var, 12 (2006), 466-483.
doi: 10.1051/cocv:2006011.![]() ![]() ![]() |
[11] |
E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and
applications to controllability, SIAM J. Control Optim., 45 (2006), 1395-1446.
doi: 10.1137/S0363012904439696.![]() ![]() ![]() |
[12] |
E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 583-616.
doi: 10.1016/S0294-1449(00)00117-7.![]() ![]() ![]() |
[13] |
A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Note Series 34 Research Institute of Mathematics, Seoul National University, Seoul, 1996.
![]() ![]() |
[14] |
C. G. Gal and M. Grasselli, The non-isothermal Allen-Cahn equation with dynamic boundary conditions, Discrete Contin. Dyn. Syst., 22 (2008), 1009-1040.
doi: 10.3934/dcds.2008.22.1009.![]() ![]() ![]() |
[15] |
A. Glitzky, An electronic model for solar cells including active interfaces and energy resolved defect densities, SIAM J. Math. Anal., 44 (2012), 3874-3900.
doi: 10.1137/110858847.![]() ![]() ![]() |
[16] |
A. Glitzky and A. Mielke, A gradient structure for systems coupling reaction-diffusion effects in bulk and interfaces, Z. Angew. Math. Physik, 64 (2013), 29-52.
doi: 10.1007/s00033-012-0207-y.![]() ![]() ![]() |
[17] |
G. R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv.
Diff. Equ., 11 (2006), 457-480.
![]() ![]() |
[18] |
D. Hömberg, K. Krumbiegel and J. Rehberg, Optimal control of a parabolic equation with
dynamic boundary condition, Appl. Math. Optim., 67 (2013), 3-31.
doi: 10.1007/s00245-012-9178-9.![]() ![]() ![]() |
[19] |
O. Yu. Imanuvilov, Controllability of parabolic equations, Sb. Math., 186 (1995), 879-900.
doi: 10.1070/SM1995v186n06ABEH000047.![]() ![]() ![]() |
[20] |
J. Jost,
Riemannian Geometry and Geometric Analysis, Fifth edition, Springer-Verlag, Berlin, 2008.
![]() ![]() |
[21] |
T. Kato,
Perturbation Theory for Linear Operators, Reprint of the 1980 edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.
![]() ![]() |
[22] |
M. Kumpf and G. Nickel, Dynamic boundary conditions and boundary control for the onedimensional heat equation, J. Dynam. Control Systems, 10 (2004), 213-225.
doi: 10.1023/B:JODS.0000024122.71407.83.![]() ![]() ![]() |
[23] |
O. A. Ladyzhenskaya, V. Solonnikov and N. Ural'tseva,
Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, Providence (RI), 1968. Reprinted with corrections, 1988.
![]() ![]() |
[24] |
G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, 20 (1995), 335-356.
doi: 10.1080/03605309508821097.![]() ![]() ![]() |
[25] |
A. Lunardi,
Interpolation Theory, Second edition, Edizioni della Normale, Pisa, 2009.
![]() ![]() |
[26] |
M. Meyries,
Maximal Regularity in Weighted Spaces, Nonlinear Boundary Conditions, and Global Attractors, Ph. D. thesis, Karlsruhe Institute of Technology, 2010.
![]() |
[27] |
A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions, Math. Methods Appl. Sci., 28 (2005), 709-735.
doi: 10.1002/mma.590.![]() ![]() ![]() |
[28] |
J. Prüss and R. Schnaubelt, Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time, J. Math. Anal. Appl., 256 (2001), 405-430.
doi: 10.1006/jmaa.2000.7247.![]() ![]() ![]() |
[29] |
J. Simon, Compact sets in the space Lp(0, T; B), Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360.![]() ![]() ![]() |
[30] |
J. Sprekels and H. Wu, A note on parabolic equation with nonlinear dynamical boundary condition, Nonlinear Analysis, 72 (2010), 3028-3048.
doi: 10.1016/j.na.2009.11.043.![]() ![]() ![]() |
[31] |
M. E. Taylor, Partial Differential Equations. Basic theory, Springer–Verlag, New York, 1996.
doi: 10.1007/978-1-4684-9320-7.![]() ![]() ![]() |
[32] |
H. Triebel,
Interpolation Theory, Function Spaces, Differential Operators, , J. A. Barth, Heidelberg, 1995.
![]() ![]() |
[33] |
M. Tucsnak and G. Weiss,
Observation and Control for Operator Semigroups, Birkhäuser Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-8994-9.![]() ![]() ![]() |
[34] |
J. L. Vázquez and E. Vitillaro, Heat equation with dynamical boundary conditions of reactivediffusive type, J. Differential Equations, 250 (2011), 2143-2161.
doi: 10.1016/j.jde.2010.12.012.![]() ![]() ![]() |
[35] |
J. Zabczyk,
Mathematical Control Theory, Birkhäuser Boston, Inc., Boston, MA, 2008.
doi: 10.1007/978-0-8176-4733-9.![]() ![]() ![]() |