• Previous Article
    Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping*
  • EECT Home
  • This Issue
  • Next Article
    $\mathbb{L}^p-$solutions of the stochastic Navier-Stokes equations subject to Lévy noise with $\mathbb{L}^m(\mathbb{R}^m)$ initial data
September  2017, 6(3): 427-436. doi: 10.3934/eect.2017022

Sensitivity analysis in set-valued optimization under strictly minimal efficiency

1. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

2. 

College of Mathematics and Science, Tongren University, Tongren 554300, China

* Corresponding author: pzhjearya@gmail.com

Received  December 2015 Revised  May 2017 Published  July 2017

Fund Project: The authors are supported by the Natural Science Foundation of China No. 71471140, Natural science program of Guizhou Provincial Department of Education[2015]456 and Collaborative Fund of the Science and Teachnology Department of Guizhou Province[2014]7490.

In this paper, the behavior of the perturbation map is analyzed quantitatively by virtue of contingent derivatives and generalized contingent epiderivatives for the set-valued maps under strictly minimal efficiency. The purpose of this paper is to provide some well-known results concerning sensitivity analysis by applying a separation theorem for convex sets. When the results regress to multiobjective optimization, some related conclusions are obtained in a multiobjective programming problem.

Citation: Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in set-valued optimization under strictly minimal efficiency. Evolution Equations & Control Theory, 2017, 6 (3) : 427-436. doi: 10.3934/eect.2017022
References:
[1]

J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.  Google Scholar

[2]

J. M. Borwein and D. Zhuang, Super efficiency in vector optimization, Transactions of the American Mathematical Society, 338 (1993), 105-122.  doi: 10.1090/S0002-9947-1993-1098432-5.  Google Scholar

[3]

G. Y. Chen and J. Jahn, Optimality conditions for set-valued optimization problems, Mathematical Methods of Operations Research, 48 (1998), 187-200.  doi: 10.1007/s001860050021.  Google Scholar

[4]

Y. H. Cheng and W. T. Fu, Strong efficiency in a locally convex space, Mathematical Methods of Operations Research, 50 (1999), 373-384.  doi: 10.1007/s001860050076.  Google Scholar

[5]

A. V. Fiacco, Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Academic Press, New York, 1983.  Google Scholar

[6]

W. T. Fu and X. Q. Chen, On approximation families of cones and strictly efficient points, Acta Mathematica Sinica, 40 (1997), 933-938.   Google Scholar

[7]

W. T. Fu and Y. H. Cheng, On the strict efficiency in a locally convex space, Journal of Systems Science and Mathematical Sciences, 12 (1999), 40-44.   Google Scholar

[8]

X. H. GongH. B. Dong and S. Y. Wang, Optimality conditions for proper efficient solutions of vector set-valued optimization, Journal of Mathematical Analysis and Applications, 284 (2003), 332-350.  doi: 10.1016/S0022-247X(03)00360-3.  Google Scholar

[9]

Y. D. Hu and C. Ling, Connectedness of cone superefficient point sets in locally convex topological vector spaces, Journal of Optimization Theory and Applications, 107 (2000), 433-446.  doi: 10.1023/A:1026412918497.  Google Scholar

[10]

J. Jahn, Vector Optimization: Theory, Applications, and Extensions, Springer, Berlin Heidelberg, 2004. doi: 10.1007/978-3-540-24828-6.  Google Scholar

[11]

S. J. Li, Sensitivity and stability for contingent derivative in multiobjective optimization, Mathematica Applicata, 11 (1998), 49-53.   Google Scholar

[12]

Z. F. Li and S. Y. Wang, Connectedness of super efficient sets in vector optimization of set-valued maps, Mathematical Methods of Operations Research, 48 (1998), 207-217.  doi: 10.1007/s001860050023.  Google Scholar

[13]

R. T. Rockafellar, Lagrange multipliers and subderivatives of optimal value functions in nonlinear programming, Mathematical Programming Study, 17 (1982), 28-66.   Google Scholar

[14]

W. D. Rong and Y. N. Wu, $\varepsilon -$weak minimal solution of vector optimization problems with set-valued maps, Journal of Optimization Theory and Applications, 106 (2000), 569-579.  doi: 10.1023/A:1004657412928.  Google Scholar

[15]

B. H. Sheng and S. Y. Liu, Sensitivity analysis in vector optimization under Benson proper efficiency, Journal of Mathematical Research & Exposition, 22 (2002), 407-412.   Google Scholar

[16]

D. S. Shi, Contingent derivative of the perturbation map in multiobjective optimization, Journal of Optimization Theory and Applications, 70 (1991), 385-396.  doi: 10.1007/BF00940634.  Google Scholar

[17]

D. S. Shi, Sensitivity analysis in convex vector optimization, Journal of Optimization Theory and Applications, 77 (1993), 145-159.  doi: 10.1007/BF00940783.  Google Scholar

[18]

T. Tanino, Sensitivity analysis in multiobjective optimization, Journal of Optimization Theory and Applications, 56 (1988), 479-499.  doi: 10.1007/BF00939554.  Google Scholar

[19]

T. Tanino, Stability and sensitivity analysis in convex vector optimization, SIAM Journal on Control and Optimization, 26 (1988), 521-536.  doi: 10.1137/0326031.  Google Scholar

show all references

References:
[1]

J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.  Google Scholar

[2]

J. M. Borwein and D. Zhuang, Super efficiency in vector optimization, Transactions of the American Mathematical Society, 338 (1993), 105-122.  doi: 10.1090/S0002-9947-1993-1098432-5.  Google Scholar

[3]

G. Y. Chen and J. Jahn, Optimality conditions for set-valued optimization problems, Mathematical Methods of Operations Research, 48 (1998), 187-200.  doi: 10.1007/s001860050021.  Google Scholar

[4]

Y. H. Cheng and W. T. Fu, Strong efficiency in a locally convex space, Mathematical Methods of Operations Research, 50 (1999), 373-384.  doi: 10.1007/s001860050076.  Google Scholar

[5]

A. V. Fiacco, Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Academic Press, New York, 1983.  Google Scholar

[6]

W. T. Fu and X. Q. Chen, On approximation families of cones and strictly efficient points, Acta Mathematica Sinica, 40 (1997), 933-938.   Google Scholar

[7]

W. T. Fu and Y. H. Cheng, On the strict efficiency in a locally convex space, Journal of Systems Science and Mathematical Sciences, 12 (1999), 40-44.   Google Scholar

[8]

X. H. GongH. B. Dong and S. Y. Wang, Optimality conditions for proper efficient solutions of vector set-valued optimization, Journal of Mathematical Analysis and Applications, 284 (2003), 332-350.  doi: 10.1016/S0022-247X(03)00360-3.  Google Scholar

[9]

Y. D. Hu and C. Ling, Connectedness of cone superefficient point sets in locally convex topological vector spaces, Journal of Optimization Theory and Applications, 107 (2000), 433-446.  doi: 10.1023/A:1026412918497.  Google Scholar

[10]

J. Jahn, Vector Optimization: Theory, Applications, and Extensions, Springer, Berlin Heidelberg, 2004. doi: 10.1007/978-3-540-24828-6.  Google Scholar

[11]

S. J. Li, Sensitivity and stability for contingent derivative in multiobjective optimization, Mathematica Applicata, 11 (1998), 49-53.   Google Scholar

[12]

Z. F. Li and S. Y. Wang, Connectedness of super efficient sets in vector optimization of set-valued maps, Mathematical Methods of Operations Research, 48 (1998), 207-217.  doi: 10.1007/s001860050023.  Google Scholar

[13]

R. T. Rockafellar, Lagrange multipliers and subderivatives of optimal value functions in nonlinear programming, Mathematical Programming Study, 17 (1982), 28-66.   Google Scholar

[14]

W. D. Rong and Y. N. Wu, $\varepsilon -$weak minimal solution of vector optimization problems with set-valued maps, Journal of Optimization Theory and Applications, 106 (2000), 569-579.  doi: 10.1023/A:1004657412928.  Google Scholar

[15]

B. H. Sheng and S. Y. Liu, Sensitivity analysis in vector optimization under Benson proper efficiency, Journal of Mathematical Research & Exposition, 22 (2002), 407-412.   Google Scholar

[16]

D. S. Shi, Contingent derivative of the perturbation map in multiobjective optimization, Journal of Optimization Theory and Applications, 70 (1991), 385-396.  doi: 10.1007/BF00940634.  Google Scholar

[17]

D. S. Shi, Sensitivity analysis in convex vector optimization, Journal of Optimization Theory and Applications, 77 (1993), 145-159.  doi: 10.1007/BF00940783.  Google Scholar

[18]

T. Tanino, Sensitivity analysis in multiobjective optimization, Journal of Optimization Theory and Applications, 56 (1988), 479-499.  doi: 10.1007/BF00939554.  Google Scholar

[19]

T. Tanino, Stability and sensitivity analysis in convex vector optimization, SIAM Journal on Control and Optimization, 26 (1988), 521-536.  doi: 10.1137/0326031.  Google Scholar

[1]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[2]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[3]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[4]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[5]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[6]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[7]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[8]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[9]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[10]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[11]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[12]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[13]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[14]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[15]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[16]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[17]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[18]

Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial & Management Optimization, 2021, 17 (1) : 29-50. doi: 10.3934/jimo.2019097

[19]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[20]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (55)
  • HTML views (78)
  • Cited by (2)

Other articles
by authors

[Back to Top]