-
Previous Article
Finite determining parameters feedback control for distributed nonlinear dissipative systems -a computational study
- EECT Home
- This Issue
-
Next Article
Exact and approximate controllability of coupled one-dimensional hyperbolic equations
Approximate controllability of semilinear non-autonomous evolution systems with state-dependent delay
Department of Mathematics, Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China |
The controllability of non-autonomous evolution systems is an important and difficult topic in control theory. In this paper, we study the approximate controllability of semilinear non-autonomous evolution systems with state-dependent delay. The theory of linear evolution operators is used instead of $C_0-$semigroup to discuss the problem. Some sufficient conditions of approximate controllability are formulated and proved here by using the resolvent operator condition. Finally, two examples are provided to illustrate the applications of the obtained results.
References:
[1] |
O. Arino, M. Habid and R. Bravo de la Parra,
A mathematical model of growth of population of fish in the larval stage: density-dependence effects, Math. Biosc., 150 (1998), 1-20.
doi: 10.1016/S0025-5564(98)00008-X. |
[2] |
Z. Balanov, Q. Hu and W. Krawcewicz,
Global Hopf bifurcation of differential equations with threshold type state-dependent delay, J. Diff. Equ., 257 (2014), 2622-2670.
doi: 10.1016/j.jde.2014.05.053. |
[3] |
A. E. Bashirov and N. I. Mahmudov,
On concepts of controllability for linear deterministic and stochastic systems, SIAM J. Control Optim., 37 (1999), 1808-1821.
doi: 10.1137/S036301299732184X. |
[4] |
M. Belmekki, M. Benchohra and K. Ezzinbi,
Existence results for some partial functional differential equations with state-dependent delay, Appl. Math. Lett., 24 (2011), 1810-1816.
doi: 10.1016/j.aml.2011.04.039. |
[5] |
R. Curtain and H. J. Zwart,
An Introduction to Infinite Dimensional Linear Systems Theory, Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4224-6. |
[6] |
J. P. Dauer and N. I. Mahmudov,
Approximate controllability of semilinear functional equations in Hilbert spaces, J. Math. Anal. Appl., 273 (2002), 310-327.
doi: 10.1016/S0022-247X(02)00225-1. |
[7] |
W. Fitzgibbon,
Semilinear functional differential equations in Banach space, J. Diff. Equ., 29 (1978), 1-14.
doi: 10.1016/0022-0396(78)90037-2. |
[8] |
A. Friedman,
Partial Differential Equations, Holt, Rinehart and Winston, New York. 1969. |
[9] |
X. Fu and X. Liu,
Existence of periodic solutions for abstract neutral non-autonomous equations with infinite delay, J. Math. Anal. Appl., 325 (2007), 249-267.
doi: 10.1016/j.jmaa.2006.01.048. |
[10] |
X. Fu and K. Mei,
Approximate controllability of semilinear partial functional differential systems, J. Dyn. Control Syst., 15 (2009), 425-443.
doi: 10.1007/s10883-009-9068-x. |
[11] |
X. Fu and J. Zhang,
Approximate controllability of neutral functional differential systems with state-dependent delay, Chinese Ann. Math. (B), 37 (2016), 291-308.
doi: 10.1007/s11401-016-0934-z. |
[12] |
R. K. Georgr,
Approximate controllability of non-autonomous semiliear systems, Nonl. Anal. (TMA), 24 (1995), 1377-1393.
doi: 10.1016/0362-546X(94)E0082-R. |
[13] |
J. Hale and J. Kato,
Phase space for retarded equations with infinite delay, Funkcial ekvac., 21 (1978), 11-41.
|
[14] |
E. Hernández and D. O'Regan, $C^α-$Hölder classical solutionss for neutral differential euations, Discr. Cont. Dyn. Syst. (A), 29 (2011), 241-260. Google Scholar |
[15] |
E. Hernández, A. Prokopczyk and L. Ladeira,
A note on partial functional differential equations with state-dependent delay, Nonl. Anal. (RWA), 7 (2006), 510-519.
doi: 10.1016/j.nonrwa.2005.03.014. |
[16] |
Y. Hino, S. Murakami and T. Naito,
Functional Differential Equations with Infinite Delay, Springer-verlag, Berlin, 1991.
doi: 10.1007/BFb0084432. |
[17] |
J. Jeong, Y. Kwun and J. Park,
Approximate controllability for semilinear retarded functional differential equations, J. Dyn. Contr. Syst., 5 (1999), 329-346.
doi: 10.1023/A:1021714500075. |
[18] |
J. Jeong and H. Roh,
Approximate controllability for semilinear retarded systems, J. Math. Anal. Appl., 321 (2006), 961-975.
doi: 10.1016/j.jmaa.2005.09.005. |
[19] |
V. Keyantuo and C. Lizama,
Hölder continuous solutions for integro-differential equations and maximal regularity, J. Diff. Equ., 230 (2006), 634-660.
doi: 10.1016/j.jde.2006.07.018. |
[20] |
A. Lunardi,
On the linear heat equation with fading memory, SIAM J. Math. Anal., 21 (1990), 1213-1224.
doi: 10.1137/0521066. |
[21] |
J. M. Mahaffy, J. Belair and M. C. Mackey, Hematopoietic model with moving boundary condition and state dependent delay: Applications in erythropoiesis, J. Theory Bio., 190 (1998), 135-146. Google Scholar |
[22] |
N.I. Mahmudov and S. Zorlu,
On the approximate controllability of fractional evolution equations with compact analytic semigroup, J. Comp. Appl. Math., 259 (2014), 194-204.
doi: 10.1016/j.cam.2013.06.015. |
[23] |
F. Z. Mokkedem and X. Fu,
Approximate controllability for a semilinear evolut ion system with infinite delay, J. Dyn. Control Sys., 22 (2016), 71-89.
doi: 10.1007/s10883-014-9252-5. |
[24] |
K. Naito,
Controllability of semilinear control systems dominated by the linear part, SIAM J. Control Optim., 25 (1987), 715-722.
doi: 10.1137/0325040. |
[25] |
K. Naito,
Approximate controllability for trajectories of a delay Voltera control system, J. Optim. Theory Appl., 61 (1989), 271-279.
doi: 10.1007/BF00962800. |
[26] |
J. W. Nunziato,
On heat conduction in materials with memory, Quart. Appl. Math., 29 (1971), 187-204.
doi: 10.1090/qam/295683. |
[27] |
A. Pazy,
Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[28] |
S. M. Rankin III,
Existence and asymptotic behavior of a functional differential equation in Banach space, J. Math. Anal. Appl., 88 (1982), 531-542.
doi: 10.1016/0022-247X(82)90211-6. |
[29] |
R. Sakthivel and E. R. Ananndhi,
Approximate controllability of impulsive differential equations with state-dependent delay, Int. J. control., 83 (2010), 387-393.
doi: 10.1080/00207170903171348. |
[30] |
R. Sakthivel, R. Ganesh and S. M. Anthoni,
Approximate controllability of fractional nonlinear differential inclusions, Appl. Math. Comp., 225 (2013), 708-717.
doi: 10.1016/j.amc.2013.09.068. |
[31] |
R. Sakthivel and Y. Ren,
Approximate controllability of fractional differential equations with state-dependent delay, Results Math., 63 (2013), 949-963.
doi: 10.1007/s00025-012-0245-y. |
[32] |
R. Sakthivel, S. Suganya and S. M. Anthoni,
Approximate controllability of fractional stochastic evolution equations, Comp. Math. Appl., 63 (2012), 660-668.
doi: 10.1016/j.camwa.2011.11.024. |
[33] |
J. P. C. dos Santos,
On state-dependent delay partial neutral functional integro-differential equations, Appl. Math. Comp., 216 (2010), 1637-1644.
doi: 10.1016/j.amc.2010.03.019. |
[34] |
L. Shen and J. Sun,
Approximate controllability of stochastic impulsive functional systems with infinite delay, Automatica, 48 (2012), 2705-2709.
doi: 10.1016/j.automatica.2012.06.098. |
[35] |
N. Sukavanam and S. Kumar,
Approximate controllability of fractional order semilinear delay systems, J. Optim. Theory Appl., 151 (2011), 373-384.
doi: 10.1007/s10957-011-9905-4. |
[36] |
H. Tanabe,
Equations of Evolution, Pitman Publishing, London, 1979. |
[37] |
C. C. Travis and G. F. Webb,
Partial differential equations with deviating arguments in the time variable, J. Math. Anal. Appl., 56 (1976), 397-409.
doi: 10.1016/0022-247X(76)90052-4. |
[38] |
C. C. Travis and G. F. Webb,
Existence, stability and compactness in the $α-$norm for partial functional differential equations, Trans. Amer. Math. Soc., 240 (1978), 129-143.
doi: 10.2307/1998809. |
[39] |
L. Wang,
Approximate controllability for integrodifferential equations with multiple delays, J. Optim. Theory Appl., 143 (2009), 185-206.
doi: 10.1007/s10957-009-9545-0. |
[40] |
L. Wang,
Approximate controllability results of semilinear integrodifferential equations with infinite delays, Sci. China Ser. F-Inf. Sci., 52 (2009), 1095-1102.
doi: 10.1007/s11432-009-0127-4. |
[41] |
Z. Yan,
Approximate controllability of partial neutral functional differential systems of fractional order with state-dependent delay, Int. J. Contr., 85 (2012), 1051-1062.
doi: 10.1080/00207179.2012.675518. |
[42] |
Z. Yan,
Approximate controllability of fractional neutral integro-differential inclusions with state-dependent delay in Hilbert spaces, IMA J. Math. Control Inform., 30 (2013), 443-462.
doi: 10.1093/imamci/dns033. |
show all references
References:
[1] |
O. Arino, M. Habid and R. Bravo de la Parra,
A mathematical model of growth of population of fish in the larval stage: density-dependence effects, Math. Biosc., 150 (1998), 1-20.
doi: 10.1016/S0025-5564(98)00008-X. |
[2] |
Z. Balanov, Q. Hu and W. Krawcewicz,
Global Hopf bifurcation of differential equations with threshold type state-dependent delay, J. Diff. Equ., 257 (2014), 2622-2670.
doi: 10.1016/j.jde.2014.05.053. |
[3] |
A. E. Bashirov and N. I. Mahmudov,
On concepts of controllability for linear deterministic and stochastic systems, SIAM J. Control Optim., 37 (1999), 1808-1821.
doi: 10.1137/S036301299732184X. |
[4] |
M. Belmekki, M. Benchohra and K. Ezzinbi,
Existence results for some partial functional differential equations with state-dependent delay, Appl. Math. Lett., 24 (2011), 1810-1816.
doi: 10.1016/j.aml.2011.04.039. |
[5] |
R. Curtain and H. J. Zwart,
An Introduction to Infinite Dimensional Linear Systems Theory, Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4224-6. |
[6] |
J. P. Dauer and N. I. Mahmudov,
Approximate controllability of semilinear functional equations in Hilbert spaces, J. Math. Anal. Appl., 273 (2002), 310-327.
doi: 10.1016/S0022-247X(02)00225-1. |
[7] |
W. Fitzgibbon,
Semilinear functional differential equations in Banach space, J. Diff. Equ., 29 (1978), 1-14.
doi: 10.1016/0022-0396(78)90037-2. |
[8] |
A. Friedman,
Partial Differential Equations, Holt, Rinehart and Winston, New York. 1969. |
[9] |
X. Fu and X. Liu,
Existence of periodic solutions for abstract neutral non-autonomous equations with infinite delay, J. Math. Anal. Appl., 325 (2007), 249-267.
doi: 10.1016/j.jmaa.2006.01.048. |
[10] |
X. Fu and K. Mei,
Approximate controllability of semilinear partial functional differential systems, J. Dyn. Control Syst., 15 (2009), 425-443.
doi: 10.1007/s10883-009-9068-x. |
[11] |
X. Fu and J. Zhang,
Approximate controllability of neutral functional differential systems with state-dependent delay, Chinese Ann. Math. (B), 37 (2016), 291-308.
doi: 10.1007/s11401-016-0934-z. |
[12] |
R. K. Georgr,
Approximate controllability of non-autonomous semiliear systems, Nonl. Anal. (TMA), 24 (1995), 1377-1393.
doi: 10.1016/0362-546X(94)E0082-R. |
[13] |
J. Hale and J. Kato,
Phase space for retarded equations with infinite delay, Funkcial ekvac., 21 (1978), 11-41.
|
[14] |
E. Hernández and D. O'Regan, $C^α-$Hölder classical solutionss for neutral differential euations, Discr. Cont. Dyn. Syst. (A), 29 (2011), 241-260. Google Scholar |
[15] |
E. Hernández, A. Prokopczyk and L. Ladeira,
A note on partial functional differential equations with state-dependent delay, Nonl. Anal. (RWA), 7 (2006), 510-519.
doi: 10.1016/j.nonrwa.2005.03.014. |
[16] |
Y. Hino, S. Murakami and T. Naito,
Functional Differential Equations with Infinite Delay, Springer-verlag, Berlin, 1991.
doi: 10.1007/BFb0084432. |
[17] |
J. Jeong, Y. Kwun and J. Park,
Approximate controllability for semilinear retarded functional differential equations, J. Dyn. Contr. Syst., 5 (1999), 329-346.
doi: 10.1023/A:1021714500075. |
[18] |
J. Jeong and H. Roh,
Approximate controllability for semilinear retarded systems, J. Math. Anal. Appl., 321 (2006), 961-975.
doi: 10.1016/j.jmaa.2005.09.005. |
[19] |
V. Keyantuo and C. Lizama,
Hölder continuous solutions for integro-differential equations and maximal regularity, J. Diff. Equ., 230 (2006), 634-660.
doi: 10.1016/j.jde.2006.07.018. |
[20] |
A. Lunardi,
On the linear heat equation with fading memory, SIAM J. Math. Anal., 21 (1990), 1213-1224.
doi: 10.1137/0521066. |
[21] |
J. M. Mahaffy, J. Belair and M. C. Mackey, Hematopoietic model with moving boundary condition and state dependent delay: Applications in erythropoiesis, J. Theory Bio., 190 (1998), 135-146. Google Scholar |
[22] |
N.I. Mahmudov and S. Zorlu,
On the approximate controllability of fractional evolution equations with compact analytic semigroup, J. Comp. Appl. Math., 259 (2014), 194-204.
doi: 10.1016/j.cam.2013.06.015. |
[23] |
F. Z. Mokkedem and X. Fu,
Approximate controllability for a semilinear evolut ion system with infinite delay, J. Dyn. Control Sys., 22 (2016), 71-89.
doi: 10.1007/s10883-014-9252-5. |
[24] |
K. Naito,
Controllability of semilinear control systems dominated by the linear part, SIAM J. Control Optim., 25 (1987), 715-722.
doi: 10.1137/0325040. |
[25] |
K. Naito,
Approximate controllability for trajectories of a delay Voltera control system, J. Optim. Theory Appl., 61 (1989), 271-279.
doi: 10.1007/BF00962800. |
[26] |
J. W. Nunziato,
On heat conduction in materials with memory, Quart. Appl. Math., 29 (1971), 187-204.
doi: 10.1090/qam/295683. |
[27] |
A. Pazy,
Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[28] |
S. M. Rankin III,
Existence and asymptotic behavior of a functional differential equation in Banach space, J. Math. Anal. Appl., 88 (1982), 531-542.
doi: 10.1016/0022-247X(82)90211-6. |
[29] |
R. Sakthivel and E. R. Ananndhi,
Approximate controllability of impulsive differential equations with state-dependent delay, Int. J. control., 83 (2010), 387-393.
doi: 10.1080/00207170903171348. |
[30] |
R. Sakthivel, R. Ganesh and S. M. Anthoni,
Approximate controllability of fractional nonlinear differential inclusions, Appl. Math. Comp., 225 (2013), 708-717.
doi: 10.1016/j.amc.2013.09.068. |
[31] |
R. Sakthivel and Y. Ren,
Approximate controllability of fractional differential equations with state-dependent delay, Results Math., 63 (2013), 949-963.
doi: 10.1007/s00025-012-0245-y. |
[32] |
R. Sakthivel, S. Suganya and S. M. Anthoni,
Approximate controllability of fractional stochastic evolution equations, Comp. Math. Appl., 63 (2012), 660-668.
doi: 10.1016/j.camwa.2011.11.024. |
[33] |
J. P. C. dos Santos,
On state-dependent delay partial neutral functional integro-differential equations, Appl. Math. Comp., 216 (2010), 1637-1644.
doi: 10.1016/j.amc.2010.03.019. |
[34] |
L. Shen and J. Sun,
Approximate controllability of stochastic impulsive functional systems with infinite delay, Automatica, 48 (2012), 2705-2709.
doi: 10.1016/j.automatica.2012.06.098. |
[35] |
N. Sukavanam and S. Kumar,
Approximate controllability of fractional order semilinear delay systems, J. Optim. Theory Appl., 151 (2011), 373-384.
doi: 10.1007/s10957-011-9905-4. |
[36] |
H. Tanabe,
Equations of Evolution, Pitman Publishing, London, 1979. |
[37] |
C. C. Travis and G. F. Webb,
Partial differential equations with deviating arguments in the time variable, J. Math. Anal. Appl., 56 (1976), 397-409.
doi: 10.1016/0022-247X(76)90052-4. |
[38] |
C. C. Travis and G. F. Webb,
Existence, stability and compactness in the $α-$norm for partial functional differential equations, Trans. Amer. Math. Soc., 240 (1978), 129-143.
doi: 10.2307/1998809. |
[39] |
L. Wang,
Approximate controllability for integrodifferential equations with multiple delays, J. Optim. Theory Appl., 143 (2009), 185-206.
doi: 10.1007/s10957-009-9545-0. |
[40] |
L. Wang,
Approximate controllability results of semilinear integrodifferential equations with infinite delays, Sci. China Ser. F-Inf. Sci., 52 (2009), 1095-1102.
doi: 10.1007/s11432-009-0127-4. |
[41] |
Z. Yan,
Approximate controllability of partial neutral functional differential systems of fractional order with state-dependent delay, Int. J. Contr., 85 (2012), 1051-1062.
doi: 10.1080/00207179.2012.675518. |
[42] |
Z. Yan,
Approximate controllability of fractional neutral integro-differential inclusions with state-dependent delay in Hilbert spaces, IMA J. Math. Control Inform., 30 (2013), 443-462.
doi: 10.1093/imamci/dns033. |
[1] |
Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020103 |
[2] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[3] |
Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020383 |
[4] |
Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171 |
[5] |
Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020104 |
[6] |
Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020376 |
[7] |
Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021018 |
[8] |
Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080 |
[9] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[10] |
Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233 |
[11] |
Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265 |
[12] |
Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077 |
[13] |
Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304 |
[14] |
Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046 |
[15] |
Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021004 |
[16] |
Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020405 |
[17] |
Philippe Laurençot, Christoph Walker. Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 677-694. doi: 10.3934/dcdss.2020360 |
[18] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[19] |
Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299 |
[20] |
Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020055 |
2019 Impact Factor: 0.953
Tools
Metrics
Other articles
by authors
[Back to Top]