December  2017, 6(4): 535-557. doi: 10.3934/eect.2017027

Finite determining parameters feedback control for distributed nonlinear dissipative systems -a computational study

1. 

Department of Mathematics, United States Naval Academy, Annapolis, MD 21402, USA

2. 

Departments of Mathematics, Texas A & M University, College Station, TX 77843-3368, USA

3. 

Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel

* Corresponding author: Evelyn Lunasin

Received  March 2017 Revised  August 2017 Published  September 2017

We investigate the effectiveness of a simple finite-dimensional feedback control scheme for globally stabilizing solutions of infinite-dimensional dissipative evolution equations introduced by Azouani and Titi in [7]. This feedback control algorithm overcomes some of the major difficulties in control of multi-scale processes: It does not require the presence of separation of scales nor does it assume the existence of a finite-dimensional globally invariant inertial manifold. In this work we present a theoretical framework for a control algorithm which allows us to give a systematic stability analysis, and present the parameter regime where stabilization or control objective is attained. In addition, the number of observables and controllers that were derived analytically and implemented in our numerical studies is consistent with the finite number of determining modes that are relevant to the underlying physical system. We verify the results computationally in the context of the Chafee-Infante reaction-diffusion equation, the Kuramoto-Sivashinsky equation, and other applied control problems, and observe that the control strategy is robust and independent of the model equation describing the dissipative system.

Citation: Evelyn Lunasin, Edriss S. Titi. Finite determining parameters feedback control for distributed nonlinear dissipative systems -a computational study. Evolution Equations & Control Theory, 2017, 6 (4) : 535-557. doi: 10.3934/eect.2017027
References:
[1]

S. Ahuja, Reduction Methods for Feedback Stabilization of Fluid Flows, Ph. D Thesis, Dept. of Mechanical and Aerospace Engineering, Princeton University, 2009. Google Scholar

[2]

M. U. AltafE. S. TitiT. GebraelO. KnioL. ZhaoM. F. McCabe and I. Hoteit, Downscaling the 2D Bénard convection equations using continuous data assimilation, Computat. Geosci., 21 (2017), 393-410.  doi: 10.1007/s10596-017-9619-2.  Google Scholar

[3]

A. Armaou and P. D. Christofides, Feedback control of the Kuramoto-Sivashinsky equation, Physica D, 137 (2000), 49-61.  doi: 10.1016/S0167-2789(99)00175-X.  Google Scholar

[4]

A. Armou and P. D. Christofides, Wave suppression by nonlinear finite-dimensional control, Eng. Sci., 55 (2000), 2627-2640.  doi: 10.1016/S0009-2509(99)00544-8.  Google Scholar

[5]

A. Armou and P. D. Christofides, Global stabilization of the Kuramoto-Sivashinsky Equation via distributed output feedback control, Syst. & Contr. Lett., 39 (2000), 283-294.  doi: 10.1016/S0167-6911(99)00108-5.  Google Scholar

[6]

A. AzouaniE. Olson and E. S. Titi, Continuous data assimilation using general interpolant observables, J. Nonlinear Sci., 24 (2014), 277-304.  doi: 10.1007/s00332-013-9189-y.  Google Scholar

[7]

A. Azouani and E. S. Titi, Feedback control of nonlinear dissipative systems by finite determining parameters -A reaction-diffusion Paradigm, Evolution Equations and Control Theory, 3 (2014), 579-594.  doi: 10.3934/eect.2014.3.579.  Google Scholar

[8]

A. V. Babin and M. Vishik, Attractors of Evolutionary Partial Differential Equations, North-Holland, Amsterdam, London, NewYork, Tokyo, 1992.  Google Scholar

[9]

H. BessaihE. Olson and E. S. Titi, Continuous assimilation of data with stochastic noise, Nonlinearity, 28 (2015), 729-753.  doi: 10.1088/0951-7715/28/3/729.  Google Scholar

[10]

J. Bronski and T. Gambill, Uncertainty estimates and $L_2$ bounds for the Kuramoto-Sivashinsky equation, Nonlinearity, 19 (2006), 2023-2039.  doi: 10.1088/0951-7715/19/9/002.  Google Scholar

[11]

C. CaoI. Kevrekidis and E. S. Titi, Numerical criterion for the stabilization of steady states of the Navier-Stokes equations, Indiana University Mathematics Journal, 50 (2001), 37-96.  doi: 10.1512/iumj.2001.50.2154.  Google Scholar

[12]

J. CharneyJ. Halem and M. Jastrow, Use of incomplete historical data to infer the present state of the atmosphere, Journal of Atmospheric Science, 26 (1969), 1160-1163.  doi: 10.1175/1520-0469(1969)026<1160:UOIHDT>2.0.CO;2.  Google Scholar

[13]

L. H. Chen and H. C. Chang, Nonlinear waves on liquid film surfaces-Ⅱ. Bifurcation analyzes of the long-wave equation, Chem. Eng. Sci., 41 (1986), 2477-2486.   Google Scholar

[14]

P. D. Christofides, Nonlinear and robust control of PDE systems: Methods and Applications to Transport-Reaction Processes, Springer Science + Business Media, New York, 2001. doi: 10.1007/978-1-4612-0185-4.  Google Scholar

[15]

B. CockburnD. A. Jones and E. S. Titi, Degrés de liberté déterminants pour équations non linéaires dissipatives, C.R. Acad. Sci.-Paris, Sér. I, 321 (1995), 563-568.   Google Scholar

[16]

B. CockburnD. A. Jones and E. S. Titi, Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems, Math. Comput., 66 (1997), 1073-1087.  doi: 10.1090/S0025-5718-97-00850-8.  Google Scholar

[17]

B. I. CohenJ. A. KrommesW. M. Tang and M. N. Rosenbluth, Non-linear saturation of the dissipative trapped-ion mode by mode coupling, Nuclear Fusion, 16 (1976), 971-974.  doi: 10.1088/0029-5515/16/6/009.  Google Scholar

[18]

P. ColletJ.-P. EckmannH. Epstein and J. Stubbe, A global attracting set for the Kuramoto-Sivashinksy equation, Commun. Math. Phys., 152 (1993), 203-214.  doi: 10.1007/BF02097064.  Google Scholar

[19]

P. Constantin and C. Foias, Navier-Stokes Equations, University of Chicago Press, Chicago, 1988.  Google Scholar

[20]

P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Springer-Verlag, Applies Mathematical Sciences Series, 70 1989. doi: 10.1007/978-1-4612-3506-4.  Google Scholar

[21]

S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems, J. Comput. Phys., 176 (2002), 430-455.  doi: 10.1006/jcph.2002.6995.  Google Scholar

[22]

S. DubljevicN. El-Farra and P. Christofides, Predictive control of transport-reaction processes, Computers and Chemical Engineering, 29 (2005), 2335-2345.  doi: 10.1016/j.compchemeng.2005.05.008.  Google Scholar

[23]

S. DubljevicN. El-Farra and P. Christofides, Predictive control of parabolic pdes with state and control constraints, Cinter. J. Rob. & Non. Contr., 16 (2006), 749-772.  doi: 10.1002/rnc.1097.  Google Scholar

[24]

N. H. El-FarraA. Armaou and P. D. Christofides, Analysis and control of parabolic PDE systems with input constraints, Automatica, 39 (2003), 715-725.  doi: 10.1016/S0005-1098(02)00304-7.  Google Scholar

[25]

A. FarhatM. S. Jolly and E. S. Titi, Continuous data assimilation for the 2D Bénard convection through velocity measurements alone, Physica D, 303 (2015), 59-66.  doi: 10.1016/j.physd.2015.03.011.  Google Scholar

[26]

A. FarhatE. Lunasin and E. S. Titi, Abridged continuous data assimilation for the 2D Navier-Stokes Equations utilizing measurements of only one component of the velocity field, J. Math. Fluid Mech., 18 (2016), 1-23.  doi: 10.1007/s00021-015-0225-6.  Google Scholar

[27]

A. FarhatE. Lunasin and E. S. Titi, Continuous data assimilation for a 2D Bénard convection system through horizontal velocity measurements alone, J. Nonlinear Sci., 27 (2017), 1065-1087.  doi: 10.1007/s00332-017-9360-y.  Google Scholar

[28]

A. FarhatE. Lunasin and E. S. Titi, On the Charney conjecture of data assimilation employing temperature measurements alone: the paradigm of 3D Planetary Geostrophic model, Math. Clim. Weather Forecast, 2 (2016), 61-74.  doi: 10.1515/mcwf-2016-0004.  Google Scholar

[29]

A. FarhatE. Lunasin and E. S. Titi, Data assimilation algorithm for 3D Bénard convection in porous media employing only temperature measurements, Jour. Math. Anal. Appl., 438 (2016), 492-506.  doi: 10.1016/j.jmaa.2016.01.072.  Google Scholar

[30]

C. FoiasM. S. JollyI. G. KevrekidisG. R. Sell and E. S. Titi, On the computation of inertial manifolds, Physics Letters A, 131 (1988), 433-436.  doi: 10.1016/0375-9601(88)90295-2.  Google Scholar

[31]

C. Foias, M. Jolly, R. Kravchenko and E. S. Titi, A determining form for the 2D Navier-Stokes equations -the Fourier modes case Journal of Mathematical Physics, 53 (2012), 115623, 30 pp. doi: 10.1063/1.4766459.  Google Scholar

[32]

C. FoiasM. JollyR. Karavchenko and E. S. Titi, A unified approach to determining forms for the 2D Navier-Stokes equations -the general interpolants case, Russian Mathematical Surveys, 69 (2014), 359-381.  doi: 10.1070/RM2014v069n02ABEH004891.  Google Scholar

[33]

C. Foias, O. P. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Cambridge University Press, 2001. doi: 10.1017/CBO9780511546754.  Google Scholar

[34]

C. FoiasO. P. ManleyR. Temam and Y. Treve, Asymptotic analysis of the Navier-Stokes equations, Physica D, 9 (1983), 157-188.  doi: 10.1016/0167-2789(83)90297-X.  Google Scholar

[35]

C. FoiasC. Mondaini and E. S. Titi, A discrete data assimilation scheme for the solutions of the 2D Navier-Stokes equations and their statistics, SIAM Journal on Applied Dynamical Systems, 15 (2016), 2109-2142.  doi: 10.1137/16M1076526.  Google Scholar

[36]

C. Foias and G. Prodi, Sur le comportement global des solutions non stationnaires des équations de Navier-Stokes en dimension deux, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1-34.   Google Scholar

[37]

C. FoiasG. R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations, Journal of Differential Equations, 73 (1988), 309-353.  doi: 10.1016/0022-0396(88)90110-6.  Google Scholar

[38]

C. FoiasG. R. Sell and E. S. Titi, Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations, Journal of Dynamics and Differential Equations, 1 (1989), 199-244.  doi: 10.1007/BF01047831.  Google Scholar

[39]

C. Foias and R. Temam, Determination of the solutions of the Navier-Stokes equations by a set of nodal values, Math. Comput., 43 (1984), 117-133.  doi: 10.1090/S0025-5718-1984-0744927-9.  Google Scholar

[40]

C. Foias and R. Temam, Asymptotic numerical analysis for the Navier-Stokes equations, Nonlinear Dynamics and Turbulence, eds. Barenblatt, Iooss, Joseph, Boston: Pitman Advanced Pub. Prog., 1983,139-155.  Google Scholar

[41]

C. Foias and E. S. Titi, Determining nodes, finite difference schemes and inertial manifolds, Nonlinearity, 4 (1991), 135-153.  doi: 10.1088/0951-7715/4/1/009.  Google Scholar

[42]

M. GeshoE. Olson and E. S. Titi, A computational study of a data assimilation algorithm for the two-dimensional Navier-Stokes equations, Commun. Phys, 19 (2016), 1094-1110.   Google Scholar

[43]

M. GhilB. Shkoller and V. Yangarber, A balanced diagnostic system compatible with a barotropic prognostic model., Mon. Wea. Rev., 105 (1977), 1223-1238.   Google Scholar

[44]

M. GhilM. Halem and R. Atlas, Time-continuous assimilation of remote-sounding data and its effect on weather forecasting, Mon. Wea. Rev., 107 (1978), 140-171.   Google Scholar

[45]

L. Giacomeli and F. Otto, New bounds for the Kuramoto-Sivashinsky equation, Commun. Pure. Appl. Math., 58 (2005), 297-318.  doi: 10.1002/cpa.20031.  Google Scholar

[46]

S. N. GomesD. T. Papageorgiou and G. A. Pavliotis, Stabilizing non-trivial solutions of generalized Kuramoto-Sivashinsky equation using feedback and optimal control, IMA J. Applied Mathematics, 82 (2017), 158-194.  doi: 10.1093/imamat/hxw011.  Google Scholar

[47]

S. N. GomesM. PradasS. KalliadasisD. T. Papageorgiou and G. A. Pavliotis, Controlling roughening processes in the stochastic Kuramoto-Sivashinsky equation, Physica D: Nonl. Phenom., 348 (2017), 33-43.  doi: 10.1016/j.physd.2017.02.011.  Google Scholar

[48]

J. Goodman, Stability of the Kuramoto-Sivashinky and related systems, Commun. Pure Appl. Math., 47 (1994), 293-306.  doi: 10.1002/cpa.3160470304.  Google Scholar

[49]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Survey and Monographs, 25 AMS, Providence, R. I., 1988.  Google Scholar

[50]

L. IllingD. J. Gauthier and R. Roy, Controlling optical chaos, Spatio-Temporal Dynamics, and Patterns, Advances in Atomic, Molecular and Optical Physics, 54 (2007), 615-697.  doi: 10.1016/S1049-250X(06)54010-8.  Google Scholar

[51]

M. S. JollyI. G. Kevrekidis and E. S. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: Analysis and Computations, Physica D, 44 (1990), 38-60.  doi: 10.1016/0167-2789(90)90046-R.  Google Scholar

[52]

M. JollyV. Martinez and E. S. Titi, A data assimilation algorithm for the subcritical surface quasi-geostrophic equation, Advanced Nonlinear Studies, 17 (2017), 167-192.  doi: 10.1515/ans-2016-6019.  Google Scholar

[53]

M. S. JollyT. Sadigov and E. S. Titi, A determining form for the damped driven nonlinear Schrödinger equation-Fourier modes case, J. Diff. Eqns., 258 (2015), 2711-2744.  doi: 10.1016/j.jde.2014.12.023.  Google Scholar

[54]

M. S. JollyT. Sadigov and E. S. Titi, Determining form and data assimilation algorithm for weakly damped and driven Korteweg-de Vries equaton-Fourier modes case, Nonlinear Analysis: Real World Applications, 36 (2017), 287-317.  doi: 10.1016/j.nonrwa.2017.01.010.  Google Scholar

[55]

D. Jones and E. S. Titi, On the number of determining nodes for the 2-D Navier-Stokes equations, J. Math. Anal. Appl., 168 (1992), 72-88.  doi: 10.1016/0022-247X(92)90190-O.  Google Scholar

[56]

D. Jones and E. S. Titi, Determining finite volume elements for the 2-D Navier-Stokes equations, Physica D, 60 (1992), 165-174.  doi: 10.1016/0167-2789(92)90233-D.  Google Scholar

[57]

D. Jones and E. S. Titi, Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations, Indiana University Mathematics Journal, 42 (1993), 875-887.  doi: 10.1512/iumj.1993.42.42039.  Google Scholar

[58]

V. Kalantarov and E. S. Titi, Finite-parameters feedback control for stabilizing damped nonlinear wave equations, Contemporary Mathematics: Nonlinear Analysis and Optimization, AMS, 669 (2016), 115-133.  doi: 10.1090/conm/659/13193.  Google Scholar

[59]

V. Kalantarov and E. S. Titi, Global stabilization of the Navier-Stokes-Voight and the damped nonlinear wave equations by finite number of feedback controllers, Discrete and Continuous Dynamical Systems -B, (2017), to appear, arXiv: 1706.00162 Google Scholar

[60]

A. Kazaam and L. Trefethen, Fourth-order time stepping for stiff PDEs, J. Sci Comp., 26 (2005), 1214-1233.  doi: 10.1137/S1064827502410633.  Google Scholar

[61]

I. Kukavica, On the number of determining nodes for the Ginzburg-Landau equation, Nonlinearity, 5 (1992), 997-1006.  doi: 10.1088/0951-7715/5/5/001.  Google Scholar

[62]

Y. Kuramoto and T. Tsusuki, Reductive perturbation approach to chemical instabilities, Prog. Theor. Phys., 52 (1974), 1399-1401.  doi: 10.1143/PTP.52.1399.  Google Scholar

[63]

R. E. LaQueyS. M. MahajanP. H. Rutherford and W. M. Tang, Nonlinear saturation of the trapped-ion mode, Phys. Rev. Let., 34 (1975), 391-394.  doi: 10.2172/4202869.  Google Scholar

[64]

C. H. Lee and H. T. Tran, Reduced-order-based feedback control of the Kuramoto-Sivashinsky equation, Journal of Computational and Applied Mathematics, 173 (2005), 1-19.  doi: 10.1016/j.cam.2004.02.021.  Google Scholar

[65]

M. Li and P. D. Christofides, Optimal control of diffusion-convection-reaction processes using reduced order models, Computers and Chemical Engineering, 32 (2008), 2123-2135.  doi: 10.1016/j.compchemeng.2007.10.018.  Google Scholar

[66]

Y. Lou and P. D. Christofides, Optimal actuator/sensor placement for nonlinear control of the Kuramoto-Sivashinksky equation, IEEE Transactions on Control Systems Tech., 11 (2002), 737-745.   Google Scholar

[67]

P. MarkowichE. S. Titi and S. Trabelsi, Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-Extended Darcy model, Nonlinearity, 29 (2016), 1292-1328.  doi: 10.1088/0951-7715/29/4/1292.  Google Scholar

[68]

C. Mondaini and E. S. Titi, Uniform in time error estimates for the postprocessing Galerkin method applied to a data assimilation algorithm, SIAM Journal on Numerical Analysis, (2017), to appear, arXiv: 1612.06998. Google Scholar

[69]

B. NicolaenkoB. Scheurer and R. Temam, Some global dynamical properties of the Kuramoto-Sivashinsky equation: nonlinear stability and attractors, Physica D, 16 (1985), 155-183.  doi: 10.1016/0167-2789(85)90056-9.  Google Scholar

[70]

M. Oliver and E. S. Titi, On the domain of analyticity for solutions of second order analytic nonlinear differential equations, J. Differential Equations, 174 (2001), 55-74.  doi: 10.1006/jdeq.2000.3927.  Google Scholar

[71]

F. Otto, Optimal bounds on the Kuramoto-Sivashinsky equations, Journal of Functional Analysis, 257 (2009), 2188-2245.  doi: 10.1016/j.jfa.2009.01.034.  Google Scholar

[72]

J. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics, 2001. doi: 10.1007/978-94-010-0732-0.  Google Scholar

[73]

R. Rosa, Exact finite-dimensional feedback control via inertial manifold theory with application to the Chafee-Infante equation, J. Dynamics and Diff. Eqs., 15 (2003), 61-86.  doi: 10.1023/A:1026153311546.  Google Scholar

[74]

R. Rosa and R. Temam, Finite-dimensional feedback control of a scalar reaction-diffusion equation via inertial manifold theory, Foundations of Computational Mathematics, Selected papers of a conference held at IMPA, Rio de Janeiro, RJ, Brazil, eds. F. Cucker and M. Shub, Springer-Verlag, Berlin, (1997), 382-391.  Google Scholar

[75]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer, 2002. doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[76]

S. ShvartsmanC. TheodoropoulosR. Rico-MartinezI. G. KevrekidisE. S. Titi and T. J. Mountziares, Order reduction of nonlinear dynamic models for distributed reacting systems, Journal of Process Control, 10 (2000), 177-184.   Google Scholar

[77]

G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames, Acta Astronautica, 4 (1977), 1177-1206.  doi: 10.1016/0094-5765(77)90096-0.  Google Scholar

[78]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, New York: Springer, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[79]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, Theory and numerical analysis, Reprint of the 1984 edition, 2001. doi: 10.1090/chel/343.  Google Scholar

[80]

A. Thompson, S. B. Gomes, G. A. Pavliotis and D. T. Papageorgio, Stabilising falling liquid film flows using feedback control Physics of Fluids, 28 (2016), 012107. doi: 10.1063/1.4938761.  Google Scholar

show all references

References:
[1]

S. Ahuja, Reduction Methods for Feedback Stabilization of Fluid Flows, Ph. D Thesis, Dept. of Mechanical and Aerospace Engineering, Princeton University, 2009. Google Scholar

[2]

M. U. AltafE. S. TitiT. GebraelO. KnioL. ZhaoM. F. McCabe and I. Hoteit, Downscaling the 2D Bénard convection equations using continuous data assimilation, Computat. Geosci., 21 (2017), 393-410.  doi: 10.1007/s10596-017-9619-2.  Google Scholar

[3]

A. Armaou and P. D. Christofides, Feedback control of the Kuramoto-Sivashinsky equation, Physica D, 137 (2000), 49-61.  doi: 10.1016/S0167-2789(99)00175-X.  Google Scholar

[4]

A. Armou and P. D. Christofides, Wave suppression by nonlinear finite-dimensional control, Eng. Sci., 55 (2000), 2627-2640.  doi: 10.1016/S0009-2509(99)00544-8.  Google Scholar

[5]

A. Armou and P. D. Christofides, Global stabilization of the Kuramoto-Sivashinsky Equation via distributed output feedback control, Syst. & Contr. Lett., 39 (2000), 283-294.  doi: 10.1016/S0167-6911(99)00108-5.  Google Scholar

[6]

A. AzouaniE. Olson and E. S. Titi, Continuous data assimilation using general interpolant observables, J. Nonlinear Sci., 24 (2014), 277-304.  doi: 10.1007/s00332-013-9189-y.  Google Scholar

[7]

A. Azouani and E. S. Titi, Feedback control of nonlinear dissipative systems by finite determining parameters -A reaction-diffusion Paradigm, Evolution Equations and Control Theory, 3 (2014), 579-594.  doi: 10.3934/eect.2014.3.579.  Google Scholar

[8]

A. V. Babin and M. Vishik, Attractors of Evolutionary Partial Differential Equations, North-Holland, Amsterdam, London, NewYork, Tokyo, 1992.  Google Scholar

[9]

H. BessaihE. Olson and E. S. Titi, Continuous assimilation of data with stochastic noise, Nonlinearity, 28 (2015), 729-753.  doi: 10.1088/0951-7715/28/3/729.  Google Scholar

[10]

J. Bronski and T. Gambill, Uncertainty estimates and $L_2$ bounds for the Kuramoto-Sivashinsky equation, Nonlinearity, 19 (2006), 2023-2039.  doi: 10.1088/0951-7715/19/9/002.  Google Scholar

[11]

C. CaoI. Kevrekidis and E. S. Titi, Numerical criterion for the stabilization of steady states of the Navier-Stokes equations, Indiana University Mathematics Journal, 50 (2001), 37-96.  doi: 10.1512/iumj.2001.50.2154.  Google Scholar

[12]

J. CharneyJ. Halem and M. Jastrow, Use of incomplete historical data to infer the present state of the atmosphere, Journal of Atmospheric Science, 26 (1969), 1160-1163.  doi: 10.1175/1520-0469(1969)026<1160:UOIHDT>2.0.CO;2.  Google Scholar

[13]

L. H. Chen and H. C. Chang, Nonlinear waves on liquid film surfaces-Ⅱ. Bifurcation analyzes of the long-wave equation, Chem. Eng. Sci., 41 (1986), 2477-2486.   Google Scholar

[14]

P. D. Christofides, Nonlinear and robust control of PDE systems: Methods and Applications to Transport-Reaction Processes, Springer Science + Business Media, New York, 2001. doi: 10.1007/978-1-4612-0185-4.  Google Scholar

[15]

B. CockburnD. A. Jones and E. S. Titi, Degrés de liberté déterminants pour équations non linéaires dissipatives, C.R. Acad. Sci.-Paris, Sér. I, 321 (1995), 563-568.   Google Scholar

[16]

B. CockburnD. A. Jones and E. S. Titi, Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems, Math. Comput., 66 (1997), 1073-1087.  doi: 10.1090/S0025-5718-97-00850-8.  Google Scholar

[17]

B. I. CohenJ. A. KrommesW. M. Tang and M. N. Rosenbluth, Non-linear saturation of the dissipative trapped-ion mode by mode coupling, Nuclear Fusion, 16 (1976), 971-974.  doi: 10.1088/0029-5515/16/6/009.  Google Scholar

[18]

P. ColletJ.-P. EckmannH. Epstein and J. Stubbe, A global attracting set for the Kuramoto-Sivashinksy equation, Commun. Math. Phys., 152 (1993), 203-214.  doi: 10.1007/BF02097064.  Google Scholar

[19]

P. Constantin and C. Foias, Navier-Stokes Equations, University of Chicago Press, Chicago, 1988.  Google Scholar

[20]

P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Springer-Verlag, Applies Mathematical Sciences Series, 70 1989. doi: 10.1007/978-1-4612-3506-4.  Google Scholar

[21]

S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems, J. Comput. Phys., 176 (2002), 430-455.  doi: 10.1006/jcph.2002.6995.  Google Scholar

[22]

S. DubljevicN. El-Farra and P. Christofides, Predictive control of transport-reaction processes, Computers and Chemical Engineering, 29 (2005), 2335-2345.  doi: 10.1016/j.compchemeng.2005.05.008.  Google Scholar

[23]

S. DubljevicN. El-Farra and P. Christofides, Predictive control of parabolic pdes with state and control constraints, Cinter. J. Rob. & Non. Contr., 16 (2006), 749-772.  doi: 10.1002/rnc.1097.  Google Scholar

[24]

N. H. El-FarraA. Armaou and P. D. Christofides, Analysis and control of parabolic PDE systems with input constraints, Automatica, 39 (2003), 715-725.  doi: 10.1016/S0005-1098(02)00304-7.  Google Scholar

[25]

A. FarhatM. S. Jolly and E. S. Titi, Continuous data assimilation for the 2D Bénard convection through velocity measurements alone, Physica D, 303 (2015), 59-66.  doi: 10.1016/j.physd.2015.03.011.  Google Scholar

[26]

A. FarhatE. Lunasin and E. S. Titi, Abridged continuous data assimilation for the 2D Navier-Stokes Equations utilizing measurements of only one component of the velocity field, J. Math. Fluid Mech., 18 (2016), 1-23.  doi: 10.1007/s00021-015-0225-6.  Google Scholar

[27]

A. FarhatE. Lunasin and E. S. Titi, Continuous data assimilation for a 2D Bénard convection system through horizontal velocity measurements alone, J. Nonlinear Sci., 27 (2017), 1065-1087.  doi: 10.1007/s00332-017-9360-y.  Google Scholar

[28]

A. FarhatE. Lunasin and E. S. Titi, On the Charney conjecture of data assimilation employing temperature measurements alone: the paradigm of 3D Planetary Geostrophic model, Math. Clim. Weather Forecast, 2 (2016), 61-74.  doi: 10.1515/mcwf-2016-0004.  Google Scholar

[29]

A. FarhatE. Lunasin and E. S. Titi, Data assimilation algorithm for 3D Bénard convection in porous media employing only temperature measurements, Jour. Math. Anal. Appl., 438 (2016), 492-506.  doi: 10.1016/j.jmaa.2016.01.072.  Google Scholar

[30]

C. FoiasM. S. JollyI. G. KevrekidisG. R. Sell and E. S. Titi, On the computation of inertial manifolds, Physics Letters A, 131 (1988), 433-436.  doi: 10.1016/0375-9601(88)90295-2.  Google Scholar

[31]

C. Foias, M. Jolly, R. Kravchenko and E. S. Titi, A determining form for the 2D Navier-Stokes equations -the Fourier modes case Journal of Mathematical Physics, 53 (2012), 115623, 30 pp. doi: 10.1063/1.4766459.  Google Scholar

[32]

C. FoiasM. JollyR. Karavchenko and E. S. Titi, A unified approach to determining forms for the 2D Navier-Stokes equations -the general interpolants case, Russian Mathematical Surveys, 69 (2014), 359-381.  doi: 10.1070/RM2014v069n02ABEH004891.  Google Scholar

[33]

C. Foias, O. P. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Cambridge University Press, 2001. doi: 10.1017/CBO9780511546754.  Google Scholar

[34]

C. FoiasO. P. ManleyR. Temam and Y. Treve, Asymptotic analysis of the Navier-Stokes equations, Physica D, 9 (1983), 157-188.  doi: 10.1016/0167-2789(83)90297-X.  Google Scholar

[35]

C. FoiasC. Mondaini and E. S. Titi, A discrete data assimilation scheme for the solutions of the 2D Navier-Stokes equations and their statistics, SIAM Journal on Applied Dynamical Systems, 15 (2016), 2109-2142.  doi: 10.1137/16M1076526.  Google Scholar

[36]

C. Foias and G. Prodi, Sur le comportement global des solutions non stationnaires des équations de Navier-Stokes en dimension deux, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1-34.   Google Scholar

[37]

C. FoiasG. R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations, Journal of Differential Equations, 73 (1988), 309-353.  doi: 10.1016/0022-0396(88)90110-6.  Google Scholar

[38]

C. FoiasG. R. Sell and E. S. Titi, Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations, Journal of Dynamics and Differential Equations, 1 (1989), 199-244.  doi: 10.1007/BF01047831.  Google Scholar

[39]

C. Foias and R. Temam, Determination of the solutions of the Navier-Stokes equations by a set of nodal values, Math. Comput., 43 (1984), 117-133.  doi: 10.1090/S0025-5718-1984-0744927-9.  Google Scholar

[40]

C. Foias and R. Temam, Asymptotic numerical analysis for the Navier-Stokes equations, Nonlinear Dynamics and Turbulence, eds. Barenblatt, Iooss, Joseph, Boston: Pitman Advanced Pub. Prog., 1983,139-155.  Google Scholar

[41]

C. Foias and E. S. Titi, Determining nodes, finite difference schemes and inertial manifolds, Nonlinearity, 4 (1991), 135-153.  doi: 10.1088/0951-7715/4/1/009.  Google Scholar

[42]

M. GeshoE. Olson and E. S. Titi, A computational study of a data assimilation algorithm for the two-dimensional Navier-Stokes equations, Commun. Phys, 19 (2016), 1094-1110.   Google Scholar

[43]

M. GhilB. Shkoller and V. Yangarber, A balanced diagnostic system compatible with a barotropic prognostic model., Mon. Wea. Rev., 105 (1977), 1223-1238.   Google Scholar

[44]

M. GhilM. Halem and R. Atlas, Time-continuous assimilation of remote-sounding data and its effect on weather forecasting, Mon. Wea. Rev., 107 (1978), 140-171.   Google Scholar

[45]

L. Giacomeli and F. Otto, New bounds for the Kuramoto-Sivashinsky equation, Commun. Pure. Appl. Math., 58 (2005), 297-318.  doi: 10.1002/cpa.20031.  Google Scholar

[46]

S. N. GomesD. T. Papageorgiou and G. A. Pavliotis, Stabilizing non-trivial solutions of generalized Kuramoto-Sivashinsky equation using feedback and optimal control, IMA J. Applied Mathematics, 82 (2017), 158-194.  doi: 10.1093/imamat/hxw011.  Google Scholar

[47]

S. N. GomesM. PradasS. KalliadasisD. T. Papageorgiou and G. A. Pavliotis, Controlling roughening processes in the stochastic Kuramoto-Sivashinsky equation, Physica D: Nonl. Phenom., 348 (2017), 33-43.  doi: 10.1016/j.physd.2017.02.011.  Google Scholar

[48]

J. Goodman, Stability of the Kuramoto-Sivashinky and related systems, Commun. Pure Appl. Math., 47 (1994), 293-306.  doi: 10.1002/cpa.3160470304.  Google Scholar

[49]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Survey and Monographs, 25 AMS, Providence, R. I., 1988.  Google Scholar

[50]

L. IllingD. J. Gauthier and R. Roy, Controlling optical chaos, Spatio-Temporal Dynamics, and Patterns, Advances in Atomic, Molecular and Optical Physics, 54 (2007), 615-697.  doi: 10.1016/S1049-250X(06)54010-8.  Google Scholar

[51]

M. S. JollyI. G. Kevrekidis and E. S. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: Analysis and Computations, Physica D, 44 (1990), 38-60.  doi: 10.1016/0167-2789(90)90046-R.  Google Scholar

[52]

M. JollyV. Martinez and E. S. Titi, A data assimilation algorithm for the subcritical surface quasi-geostrophic equation, Advanced Nonlinear Studies, 17 (2017), 167-192.  doi: 10.1515/ans-2016-6019.  Google Scholar

[53]

M. S. JollyT. Sadigov and E. S. Titi, A determining form for the damped driven nonlinear Schrödinger equation-Fourier modes case, J. Diff. Eqns., 258 (2015), 2711-2744.  doi: 10.1016/j.jde.2014.12.023.  Google Scholar

[54]

M. S. JollyT. Sadigov and E. S. Titi, Determining form and data assimilation algorithm for weakly damped and driven Korteweg-de Vries equaton-Fourier modes case, Nonlinear Analysis: Real World Applications, 36 (2017), 287-317.  doi: 10.1016/j.nonrwa.2017.01.010.  Google Scholar

[55]

D. Jones and E. S. Titi, On the number of determining nodes for the 2-D Navier-Stokes equations, J. Math. Anal. Appl., 168 (1992), 72-88.  doi: 10.1016/0022-247X(92)90190-O.  Google Scholar

[56]

D. Jones and E. S. Titi, Determining finite volume elements for the 2-D Navier-Stokes equations, Physica D, 60 (1992), 165-174.  doi: 10.1016/0167-2789(92)90233-D.  Google Scholar

[57]

D. Jones and E. S. Titi, Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations, Indiana University Mathematics Journal, 42 (1993), 875-887.  doi: 10.1512/iumj.1993.42.42039.  Google Scholar

[58]

V. Kalantarov and E. S. Titi, Finite-parameters feedback control for stabilizing damped nonlinear wave equations, Contemporary Mathematics: Nonlinear Analysis and Optimization, AMS, 669 (2016), 115-133.  doi: 10.1090/conm/659/13193.  Google Scholar

[59]

V. Kalantarov and E. S. Titi, Global stabilization of the Navier-Stokes-Voight and the damped nonlinear wave equations by finite number of feedback controllers, Discrete and Continuous Dynamical Systems -B, (2017), to appear, arXiv: 1706.00162 Google Scholar

[60]

A. Kazaam and L. Trefethen, Fourth-order time stepping for stiff PDEs, J. Sci Comp., 26 (2005), 1214-1233.  doi: 10.1137/S1064827502410633.  Google Scholar

[61]

I. Kukavica, On the number of determining nodes for the Ginzburg-Landau equation, Nonlinearity, 5 (1992), 997-1006.  doi: 10.1088/0951-7715/5/5/001.  Google Scholar

[62]

Y. Kuramoto and T. Tsusuki, Reductive perturbation approach to chemical instabilities, Prog. Theor. Phys., 52 (1974), 1399-1401.  doi: 10.1143/PTP.52.1399.  Google Scholar

[63]

R. E. LaQueyS. M. MahajanP. H. Rutherford and W. M. Tang, Nonlinear saturation of the trapped-ion mode, Phys. Rev. Let., 34 (1975), 391-394.  doi: 10.2172/4202869.  Google Scholar

[64]

C. H. Lee and H. T. Tran, Reduced-order-based feedback control of the Kuramoto-Sivashinsky equation, Journal of Computational and Applied Mathematics, 173 (2005), 1-19.  doi: 10.1016/j.cam.2004.02.021.  Google Scholar

[65]

M. Li and P. D. Christofides, Optimal control of diffusion-convection-reaction processes using reduced order models, Computers and Chemical Engineering, 32 (2008), 2123-2135.  doi: 10.1016/j.compchemeng.2007.10.018.  Google Scholar

[66]

Y. Lou and P. D. Christofides, Optimal actuator/sensor placement for nonlinear control of the Kuramoto-Sivashinksky equation, IEEE Transactions on Control Systems Tech., 11 (2002), 737-745.   Google Scholar

[67]

P. MarkowichE. S. Titi and S. Trabelsi, Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-Extended Darcy model, Nonlinearity, 29 (2016), 1292-1328.  doi: 10.1088/0951-7715/29/4/1292.  Google Scholar

[68]

C. Mondaini and E. S. Titi, Uniform in time error estimates for the postprocessing Galerkin method applied to a data assimilation algorithm, SIAM Journal on Numerical Analysis, (2017), to appear, arXiv: 1612.06998. Google Scholar

[69]

B. NicolaenkoB. Scheurer and R. Temam, Some global dynamical properties of the Kuramoto-Sivashinsky equation: nonlinear stability and attractors, Physica D, 16 (1985), 155-183.  doi: 10.1016/0167-2789(85)90056-9.  Google Scholar

[70]

M. Oliver and E. S. Titi, On the domain of analyticity for solutions of second order analytic nonlinear differential equations, J. Differential Equations, 174 (2001), 55-74.  doi: 10.1006/jdeq.2000.3927.  Google Scholar

[71]

F. Otto, Optimal bounds on the Kuramoto-Sivashinsky equations, Journal of Functional Analysis, 257 (2009), 2188-2245.  doi: 10.1016/j.jfa.2009.01.034.  Google Scholar

[72]

J. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics, 2001. doi: 10.1007/978-94-010-0732-0.  Google Scholar

[73]

R. Rosa, Exact finite-dimensional feedback control via inertial manifold theory with application to the Chafee-Infante equation, J. Dynamics and Diff. Eqs., 15 (2003), 61-86.  doi: 10.1023/A:1026153311546.  Google Scholar

[74]

R. Rosa and R. Temam, Finite-dimensional feedback control of a scalar reaction-diffusion equation via inertial manifold theory, Foundations of Computational Mathematics, Selected papers of a conference held at IMPA, Rio de Janeiro, RJ, Brazil, eds. F. Cucker and M. Shub, Springer-Verlag, Berlin, (1997), 382-391.  Google Scholar

[75]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer, 2002. doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[76]

S. ShvartsmanC. TheodoropoulosR. Rico-MartinezI. G. KevrekidisE. S. Titi and T. J. Mountziares, Order reduction of nonlinear dynamic models for distributed reacting systems, Journal of Process Control, 10 (2000), 177-184.   Google Scholar

[77]

G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames, Acta Astronautica, 4 (1977), 1177-1206.  doi: 10.1016/0094-5765(77)90096-0.  Google Scholar

[78]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, New York: Springer, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[79]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, Theory and numerical analysis, Reprint of the 1984 edition, 2001. doi: 10.1090/chel/343.  Google Scholar

[80]

A. Thompson, S. B. Gomes, G. A. Pavliotis and D. T. Papageorgio, Stabilising falling liquid film flows using feedback control Physics of Fluids, 28 (2016), 012107. doi: 10.1063/1.4938761.  Google Scholar

Figure 1.  (a) Closed-loop profile showing stability of the $u(x,t)=~0$ steady state solution. (b) Top-view
Figure 2.  (a) Open-loop profile showing stability of the $u(x,t)=~0$ steady state solution when $\nu = 1.1 > 1$ (b) Profile of $u(x, t=200)$
Figure 3.  (a) Open-loop profile showing instability of the $u(x,t)=0$ steady state solution when $\nu = 4/15 < 1$. (b) Top view profile of $u(x, t)$
Figure 4.  (a) Open-loop profile showing instability of the $u(x,t)=0$ steady state solution for $0<t<40$ for $\nu = 4/15 < 1$, then the feedback control with $\mu=20$ is turned on for $t>40$ which exponentially stabilizes the system. (b) Top view profile of $u(x, t)$
Figure 5.  (a) Closed-loop profile showing fast stabilization of the $u(x,t)=0$ steady state solution for $\nu = 4/20 < 1$, and with $\mu=20$. (b) Top view profile of $u(x, t)$
Figure 6.  (a) With $u_0 = 1e^{-10}\cos x (1 + \sin x)$, the film height starts to destabilize around $t = 32$ and then once feedback control is turned on at $t_c=40$, the solution stabilizes to zero again. (b) A top view of the controlled profile
Figure 7.  (a) Open-loop profile showing instability of the $u(x,t)=0$ steady state solution. (b) Top-view of $u(x,t)$
Figure 8.  (a) Closed-loop profile showing stabilization to $u(x,t)=0$ steady state solution. (b) Top-view
Figure 9.  (a) Closed-loop profile showing eventual stability. (b) Top-view
Table 1.  Model parameters and type of interpolant operator for the controlled and uncontrolled 1D Chafee-Infante equations
Figure# Actuators $\mu$ $\nu$ $\alpha$Interpolant operator
1103001100 finite volume elements
Figure# Actuators $\mu$ $\nu$ $\alpha$Interpolant operator
1103001100 finite volume elements
Table 2.  Model parameters and type of interpolant operator for the un-controlled and controlled 1D Kuramoto-Sivashinksy equations
Figure# Actuators $\mu$ $\nu$ $t_c$Interpolant Operator
2001.10
3004/150
44204/150 Fourier modes
54204/200 finite volume
64204/2040 nodal values
Figure# Actuators $\mu$ $\nu$ $t_c$Interpolant Operator
2001.10
3004/150
44204/150 Fourier modes
54204/200 finite volume
64204/2040 nodal values
Table 3.  Model parameters and type of interpolant operator for the un-controlled and controlled catalytic rod problem
Figure# Actuators $\mu$ $\nu$ $\beta_T$$\beta_U$$\gamma$interpolant operator
7001502.04.0
81301502.04.0finite volume
91301varying2.04.0finite volume
similar to Fig 81301502.04.0nodal values
Figure# Actuators $\mu$ $\nu$ $\beta_T$$\beta_U$$\gamma$interpolant operator
7001502.04.0
81301502.04.0finite volume
91301varying2.04.0finite volume
similar to Fig 81301502.04.0nodal values
[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[5]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[6]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[7]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[8]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[9]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[10]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[11]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[12]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[13]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[14]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[15]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[16]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[17]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[18]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[19]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[20]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (118)
  • HTML views (149)
  • Cited by (15)

Other articles
by authors

[Back to Top]