December  2017, 6(4): 599-613. doi: 10.3934/eect.2017030

Exact controllability results for a class of abstract nonlocal Cauchy problem with impulsive conditions

1. 

Department of Mathematics, Kongunadu Arts and Science College, Coimbatore -641 029, Tamil Nadu, India

2. 

Department of Mathematics, SRMV College of Arts and Science, Coimbatore -641 020, Tamil Nadu, India

* Corresponding author: R. Poongodi

Received  June 2016 Revised  May 2017 Published  September 2017

This paper deals with exact controllability of a class of abstract nonlocal Cauchy problem with impulsive conditions in Banach spaces. By using Sadovskii fixed point theorem and Mönch fixed point theorem, exact controllability results are obtained without assuming the compactness and Lipschitz conditions for nonlocal functions. An example is given to illustrate the main results.

Citation: Poongodi Rathinasamy, Murugesu Rangasamy, Nirmalkumar Rajendran. Exact controllability results for a class of abstract nonlocal Cauchy problem with impulsive conditions. Evolution Equations and Control Theory, 2017, 6 (4) : 599-613. doi: 10.3934/eect.2017030
References:
[1]

A. Anguraj and M. Mallika Arjunan, Existence and uniqueness of mild and classical solutions of impulsive evolution equations, Electronic Journal of Differential Equations, 111 (2005), 1-8. 

[2]

A. Anguraj and M. Mallika Arjunan, Existence results for an impulsive neutral integro-differential equations in Banach spaces, Nonlinear Studies, 16 (2009), 33-48. 

[3]

A. Anguraj and K. Karthikeyan, Existence of solutions for impulsive neutral functional differential equations with nonlocal conditions, Nonlinear Analysis, 70 (2009), 2717-2721.  doi: 10.1016/j.na.2008.03.059.

[4]

K. BalachandranJ. Y. Park and S. H. Park, Controllability of nonlocal impulsive quasilinear integrodifferential systems in Banach spaces, Reports on Mathematical Physics, 65 (2010), 247-257.  doi: 10.1016/S0034-4877(10)80019-9.

[5]

J. Banas and K. Goebel, Measure of Noncompactness in Banach Space, in: Lecture Notes in Pure and Applied Matyenath, , Dekker, New York, 1980.

[6]

I. BenedettiV. Obukhovskii and P. Zecca, Controllability for impulsive semilinear functional differential inclusions with a non-compact evolution operator, Discussiones Mathematicae Differential Inclusions, Control and Optimization, 31 (2011), 39-69.  doi: 10.7151/dmdico.1127.

[7]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional System, Birkh" auser Boston, Inc., Boston, MA, 2007. doi: 10.1007/978-0-8176-4581-6.

[8]

L. Byszewski, Theorems about existence and uniqueness of solutions of a semi-linear evolution nonlocal Cauchy problem, Journal of Mathematical Analysis and Applications, 162 (1991), 494-505.  doi: 10.1016/0022-247X(91)90164-U.

[9]

L. Byszewski, Existence and uniqueness of classical solutions to a functional differential abstract nonlocal Cauchy problem, Journal of Applied Mathematics and Stochastic Analysis, 12 (1999), 91-97.  doi: 10.1155/S1048953399000088.

[10]

Y. K. ChangA. Anguraj and M. Mallika Arjunan, Existence results for impulsive neutral functional differential equations with infinite delay, Nonlinear Analysis: Hybrid Systems, 2 (2008), 209-218.  doi: 10.1016/j.nahs.2007.10.001.

[11]

Y. K. ChangJ. J. Nieto and W. S. Li, Controllability of semilinear differential systems with nonlocal initial conditions in Banach spaces, Journal of Optimization Theory and Applications, 142 (2009), 267-273.  doi: 10.1007/s10957-009-9535-2.

[12]

P. Y. Chen and Y. X. Li, Existence and uniqueness of strong solutions for nonlocal evolution equations, Electronic Journal of Differential Equations, 18 (2014), 1-9. 

[13]

C. CuevasE. Hernandez and M. Rabello, The existence of solutions for impulsive neutral functional differential equations, Computers and Mathematics with Applications, 58 (2009), 744-757.  doi: 10.1016/j.camwa.2009.04.008.

[14]

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.

[15]

X. Fu, Controllability of abstract neutral functional differential systems with unbounded delay, Applied Mathematics and Computation Archive, 151 (2004), 299-314.  doi: 10.1016/S0096-3003(03)00342-4.

[16]

M. GuoX. Xue and R. Li, Controllability of impulsive evolution inclusions with nonlocal conditions, Journal of Optimization Theory and Applications, 120 (2004), 355-374.  doi: 10.1023/B:JOTA.0000015688.53162.eb.

[17]

S. JiG. Li and M. Wang, Controllability of impulsive differential systems with nonlocal conditions, Applied Mathematics and Computation, 217 (2011), 6981-6989.  doi: 10.1016/j.amc.2011.01.107.

[18]

M. Kamenskii, P. Obukhovskii and Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter, 2001. doi: 10.1515/9783110870893.

[19]

V. KavithaM. M. Arjunan and C. Ravichandran, Existence results for impulsive systems with nonlocal conditions in Banach spaces, The Journal of Nonlinear Sciences and Applications, 4 (2011), 138-151. 

[20]

J. LiangH. J. Liu and T. Xiao, Nonlocal impulsive problems for nonlinear differential equations in Banach spaces, Mathematical and Computer Modelling, 49 (2009), 798-804.  doi: 10.1016/j.mcm.2008.05.046.

[21]

J. Liang and H. Yang, Controllability of fractional integro-differential evolution equations with nonlocal conditions, Applied Mathematics and Computation, 254 (2015), 20-29.  doi: 10.1016/j.cam.2015.03.017.

[22]

J. A. MachadoC. RavichandranM. Rivero and J. J. Trujillo, Controllability results for impulsive mixed-type functional integro-differential evolution equations with nonlocal conditions, Fixed Point Theory and Applications, 2013 (2013), 1-16.  doi: 10.1186/1687-1812-2013-66.

[23]

N. I. Mahmudov and A. Denker, On controllability of linear stochastic system, International Journal of Control, 73 (2000), 144-151.  doi: 10.1080/002071700219849.

[24]

H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Analysis, 4 (1980), 985-999.  doi: 10.1016/0362-546X(80)90010-3.

[25]

V. Obukhovski and P. Zecca, Controllability for systems governed by semilinear differential inclusions in a Banach space with a noncompact semigroup, Nonlinear Analysis, 70 (2009), 3424-3436.  doi: 10.1016/j.na.2008.05.009.

[26]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[27]

B. RadhakrishnanA. Mohanraj and V. Vinoba, Existence of solutions for nonlinear impulsive neutral integro-differential equations of Sobolev type with nonlocal conditions in Banach spaces, Electronic Journal of Differential Equations, 18 (2013), 1-13. 

[28]

S. SivasankaranM. Mallika Arjunan and V. Vijayakumar, Existence of global solutions for impulsive functional differential equations with nonlocal conditions, The Journal of Nonlinear Sciences and its Applications, 4 (2011), 102-114. 

[29]

S. SivasankaranV. Vijayakumar and M. Mallika Arjunan, Existence of global solutions for impulsive abstract partial neutral functional differential equations, International Journal of Nonlinear Science, 11 (2011), 412-426. 

[30]

Z. Tai, Controllability of fractional impulsive neutral integrodifferential systems with a nonlocal Cauchy condition in Banach spaces, Applied Mathematics Letters, 24 (2011), 2158-2161.  doi: 10.1016/j.aml.2011.06.018.

[31]

C. C. Travis and G. F. Webb, Partial functional differential equations with deviating arguments in time variables, Journal of Mathematical Analysis and Applications, 56 (1976), 397-409.  doi: 10.1016/0022-247X(76)90052-4.

[32]

V. VijayakumarC. Ravichandran and R. Murugesu, Nonlocal controllability of mixed Volterra-Fredholm type fractional semilinear integro-differential inclusions in banach spaces, Dynamics of Continuous, Discrete and Impulsive Systems: Series B, 20 (2013), 485-502. 

[33]

V. VijayakumarA. Selvakumar and R. Murugesu, Controllability for a class of fractional neutral integro-differential equations with unbounded delay, Applied Mathematics and Computation, 232 (2014), 303-312.  doi: 10.1016/j.amc.2014.01.029.

[34]

V. VijayakumarC. RavichandranR. Murugesu and J. J. Trujillo, Controllability results for a class of fractional semilinear integro-differential inclusions via resolvent operators, Applied Mathematics and Computation, 247 (2014), 152-161.  doi: 10.1016/j.amc.2014.08.080.

[35]

J. Wang and W. Wei, Controllability of integrodifferential systems with nonlocal initial conditions in Banach spaces, Journal of Mathematical Sciences, 177 (2011), 459-465.  doi: 10.1007/s10958-011-0471-y.

[36]

Y. ZhouV. Vijayakumar and R. Murugesu, Controllability for fractional evolution inclusions without compactness, Evolution Equations and Control Theory, 4 (2015), 507-524.  doi: 10.3934/eect.2015.4.507.

show all references

References:
[1]

A. Anguraj and M. Mallika Arjunan, Existence and uniqueness of mild and classical solutions of impulsive evolution equations, Electronic Journal of Differential Equations, 111 (2005), 1-8. 

[2]

A. Anguraj and M. Mallika Arjunan, Existence results for an impulsive neutral integro-differential equations in Banach spaces, Nonlinear Studies, 16 (2009), 33-48. 

[3]

A. Anguraj and K. Karthikeyan, Existence of solutions for impulsive neutral functional differential equations with nonlocal conditions, Nonlinear Analysis, 70 (2009), 2717-2721.  doi: 10.1016/j.na.2008.03.059.

[4]

K. BalachandranJ. Y. Park and S. H. Park, Controllability of nonlocal impulsive quasilinear integrodifferential systems in Banach spaces, Reports on Mathematical Physics, 65 (2010), 247-257.  doi: 10.1016/S0034-4877(10)80019-9.

[5]

J. Banas and K. Goebel, Measure of Noncompactness in Banach Space, in: Lecture Notes in Pure and Applied Matyenath, , Dekker, New York, 1980.

[6]

I. BenedettiV. Obukhovskii and P. Zecca, Controllability for impulsive semilinear functional differential inclusions with a non-compact evolution operator, Discussiones Mathematicae Differential Inclusions, Control and Optimization, 31 (2011), 39-69.  doi: 10.7151/dmdico.1127.

[7]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional System, Birkh" auser Boston, Inc., Boston, MA, 2007. doi: 10.1007/978-0-8176-4581-6.

[8]

L. Byszewski, Theorems about existence and uniqueness of solutions of a semi-linear evolution nonlocal Cauchy problem, Journal of Mathematical Analysis and Applications, 162 (1991), 494-505.  doi: 10.1016/0022-247X(91)90164-U.

[9]

L. Byszewski, Existence and uniqueness of classical solutions to a functional differential abstract nonlocal Cauchy problem, Journal of Applied Mathematics and Stochastic Analysis, 12 (1999), 91-97.  doi: 10.1155/S1048953399000088.

[10]

Y. K. ChangA. Anguraj and M. Mallika Arjunan, Existence results for impulsive neutral functional differential equations with infinite delay, Nonlinear Analysis: Hybrid Systems, 2 (2008), 209-218.  doi: 10.1016/j.nahs.2007.10.001.

[11]

Y. K. ChangJ. J. Nieto and W. S. Li, Controllability of semilinear differential systems with nonlocal initial conditions in Banach spaces, Journal of Optimization Theory and Applications, 142 (2009), 267-273.  doi: 10.1007/s10957-009-9535-2.

[12]

P. Y. Chen and Y. X. Li, Existence and uniqueness of strong solutions for nonlocal evolution equations, Electronic Journal of Differential Equations, 18 (2014), 1-9. 

[13]

C. CuevasE. Hernandez and M. Rabello, The existence of solutions for impulsive neutral functional differential equations, Computers and Mathematics with Applications, 58 (2009), 744-757.  doi: 10.1016/j.camwa.2009.04.008.

[14]

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.

[15]

X. Fu, Controllability of abstract neutral functional differential systems with unbounded delay, Applied Mathematics and Computation Archive, 151 (2004), 299-314.  doi: 10.1016/S0096-3003(03)00342-4.

[16]

M. GuoX. Xue and R. Li, Controllability of impulsive evolution inclusions with nonlocal conditions, Journal of Optimization Theory and Applications, 120 (2004), 355-374.  doi: 10.1023/B:JOTA.0000015688.53162.eb.

[17]

S. JiG. Li and M. Wang, Controllability of impulsive differential systems with nonlocal conditions, Applied Mathematics and Computation, 217 (2011), 6981-6989.  doi: 10.1016/j.amc.2011.01.107.

[18]

M. Kamenskii, P. Obukhovskii and Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter, 2001. doi: 10.1515/9783110870893.

[19]

V. KavithaM. M. Arjunan and C. Ravichandran, Existence results for impulsive systems with nonlocal conditions in Banach spaces, The Journal of Nonlinear Sciences and Applications, 4 (2011), 138-151. 

[20]

J. LiangH. J. Liu and T. Xiao, Nonlocal impulsive problems for nonlinear differential equations in Banach spaces, Mathematical and Computer Modelling, 49 (2009), 798-804.  doi: 10.1016/j.mcm.2008.05.046.

[21]

J. Liang and H. Yang, Controllability of fractional integro-differential evolution equations with nonlocal conditions, Applied Mathematics and Computation, 254 (2015), 20-29.  doi: 10.1016/j.cam.2015.03.017.

[22]

J. A. MachadoC. RavichandranM. Rivero and J. J. Trujillo, Controllability results for impulsive mixed-type functional integro-differential evolution equations with nonlocal conditions, Fixed Point Theory and Applications, 2013 (2013), 1-16.  doi: 10.1186/1687-1812-2013-66.

[23]

N. I. Mahmudov and A. Denker, On controllability of linear stochastic system, International Journal of Control, 73 (2000), 144-151.  doi: 10.1080/002071700219849.

[24]

H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Analysis, 4 (1980), 985-999.  doi: 10.1016/0362-546X(80)90010-3.

[25]

V. Obukhovski and P. Zecca, Controllability for systems governed by semilinear differential inclusions in a Banach space with a noncompact semigroup, Nonlinear Analysis, 70 (2009), 3424-3436.  doi: 10.1016/j.na.2008.05.009.

[26]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[27]

B. RadhakrishnanA. Mohanraj and V. Vinoba, Existence of solutions for nonlinear impulsive neutral integro-differential equations of Sobolev type with nonlocal conditions in Banach spaces, Electronic Journal of Differential Equations, 18 (2013), 1-13. 

[28]

S. SivasankaranM. Mallika Arjunan and V. Vijayakumar, Existence of global solutions for impulsive functional differential equations with nonlocal conditions, The Journal of Nonlinear Sciences and its Applications, 4 (2011), 102-114. 

[29]

S. SivasankaranV. Vijayakumar and M. Mallika Arjunan, Existence of global solutions for impulsive abstract partial neutral functional differential equations, International Journal of Nonlinear Science, 11 (2011), 412-426. 

[30]

Z. Tai, Controllability of fractional impulsive neutral integrodifferential systems with a nonlocal Cauchy condition in Banach spaces, Applied Mathematics Letters, 24 (2011), 2158-2161.  doi: 10.1016/j.aml.2011.06.018.

[31]

C. C. Travis and G. F. Webb, Partial functional differential equations with deviating arguments in time variables, Journal of Mathematical Analysis and Applications, 56 (1976), 397-409.  doi: 10.1016/0022-247X(76)90052-4.

[32]

V. VijayakumarC. Ravichandran and R. Murugesu, Nonlocal controllability of mixed Volterra-Fredholm type fractional semilinear integro-differential inclusions in banach spaces, Dynamics of Continuous, Discrete and Impulsive Systems: Series B, 20 (2013), 485-502. 

[33]

V. VijayakumarA. Selvakumar and R. Murugesu, Controllability for a class of fractional neutral integro-differential equations with unbounded delay, Applied Mathematics and Computation, 232 (2014), 303-312.  doi: 10.1016/j.amc.2014.01.029.

[34]

V. VijayakumarC. RavichandranR. Murugesu and J. J. Trujillo, Controllability results for a class of fractional semilinear integro-differential inclusions via resolvent operators, Applied Mathematics and Computation, 247 (2014), 152-161.  doi: 10.1016/j.amc.2014.08.080.

[35]

J. Wang and W. Wei, Controllability of integrodifferential systems with nonlocal initial conditions in Banach spaces, Journal of Mathematical Sciences, 177 (2011), 459-465.  doi: 10.1007/s10958-011-0471-y.

[36]

Y. ZhouV. Vijayakumar and R. Murugesu, Controllability for fractional evolution inclusions without compactness, Evolution Equations and Control Theory, 4 (2015), 507-524.  doi: 10.3934/eect.2015.4.507.

[1]

Zhihong Xia, Peizheng Yu. A fixed point theorem for twist maps. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022045

[2]

Zhan-Dong Mei, Jigen Peng, Yang Zhang. On general fractional abstract Cauchy problem. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2753-2772. doi: 10.3934/cpaa.2013.12.2753

[3]

Hans Wilhelm Alt. An abstract existence theorem for parabolic systems. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2079-2123. doi: 10.3934/cpaa.2012.11.2079

[4]

Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775

[5]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

[6]

Hernan R. Henriquez. Generalized solutions for the abstract singular Cauchy problem. Communications on Pure and Applied Analysis, 2009, 8 (3) : 955-976. doi: 10.3934/cpaa.2009.8.955

[7]

Moncef Aouadi, Taoufik Moulahi. Approximate controllability of abstract nonsimple thermoelastic problem. Evolution Equations and Control Theory, 2015, 4 (4) : 373-389. doi: 10.3934/eect.2015.4.373

[8]

Benzion Shklyar. Exact null-controllability of interconnected abstract evolution equations with unbounded input operators. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 463-479. doi: 10.3934/dcds.2021124

[9]

Tatsien Li, Zhiqiang Wang. A note on the exact controllability for nonautonomous hyperbolic systems. Communications on Pure and Applied Analysis, 2007, 6 (1) : 229-235. doi: 10.3934/cpaa.2007.6.229

[10]

Klaus-Jochen Engel, Marjeta Kramar FijavŽ. Exact and positive controllability of boundary control systems. Networks and Heterogeneous Media, 2017, 12 (2) : 319-337. doi: 10.3934/nhm.2017014

[11]

Moncef Aouadi, Kaouther Boulehmi. Partial exact controllability for inhomogeneous multidimensional thermoelastic diffusion problem. Evolution Equations and Control Theory, 2016, 5 (2) : 201-224. doi: 10.3934/eect.2016001

[12]

Tatsien Li (Daqian Li). Global exact boundary controllability for first order quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1419-1432. doi: 10.3934/dcdsb.2010.14.1419

[13]

Kaili Zhuang, Tatsien Li, Bopeng Rao. Exact controllability for first order quasilinear hyperbolic systems with internal controls. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1105-1124. doi: 10.3934/dcds.2016.36.1105

[14]

Tatsien Li, Bopeng Rao, Zhiqiang Wang. A note on the one-side exact boundary controllability for quasilinear hyperbolic systems. Communications on Pure and Applied Analysis, 2009, 8 (1) : 405-418. doi: 10.3934/cpaa.2009.8.405

[15]

Todor Gramchev, Nicola Orrú. Cauchy problem for a class of nondiagonalizable hyperbolic systems. Conference Publications, 2011, 2011 (Special) : 533-542. doi: 10.3934/proc.2011.2011.533

[16]

Enrique Fernández-Cara, Arnaud Münch. Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods. Mathematical Control and Related Fields, 2012, 2 (3) : 217-246. doi: 10.3934/mcrf.2012.2.217

[17]

Belhassen Dehman, Jean-Pierre Raymond. Exact controllability for the Lamé system. Mathematical Control and Related Fields, 2015, 5 (4) : 743-760. doi: 10.3934/mcrf.2015.5.743

[18]

Kazuhiro Ishige. On the existence of solutions of the Cauchy problem for porous medium equations with radon measure as initial data. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 521-546. doi: 10.3934/dcds.1995.1.521

[19]

Mohammad Eslamian, Ahmad Kamandi. A novel algorithm for approximating common solution of a system of monotone inclusion problems and common fixed point problem. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021210

[20]

Emeka Chigaemezu Godwin, Adeolu Taiwo, Oluwatosin Temitope Mewomo. Iterative method for solving split common fixed point problem of asymptotically demicontractive mappings in Hilbert spaces. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022005

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (198)
  • HTML views (200)
  • Cited by (1)

[Back to Top]