• Previous Article
    Asymptotic profile of solutions to the linearized double dispersion equation on the half space $\mathbb{R}^{n}_{+}$
  • EECT Home
  • This Issue
  • Next Article
    Exact controllability results for a class of abstract nonlocal Cauchy problem with impulsive conditions
December  2017, 6(4): 615-628. doi: 10.3934/eect.2017031

Degeneracy in finite time of 1D quasilinear wave equations Ⅱ

Department of Mathematics, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo 162-8601, Japan

Received  January 2017 Revised  August 2017 Published  September 2017

Fund Project: The first author is supported by Grant-in-Aid for Young Scientists Research (B), 16K17631

We consider the large time behavior of solutions to the following nonlinear wave equation: $\partial_{t}^2 u = c(u)^{2}\partial^2 _x u + λ c(u)c'(u)(\partial_x u)^2$ with the parameter $λ ∈ [0,2]$. If $c(u(0,x))$ is bounded away from a positive constant, we can construct a local solution for smooth initial data. However, if $c(· )$ has a zero point, then $c(u(t,x))$ can be going to zero in finite time. When $c(u(t,x))$ is going to 0, the equation degenerates. We give a sufficient condition so that the equation with $0≤q λ < 2$ degenerates in finite time.

Citation: Yuusuke Sugiyama. Degeneracy in finite time of 1D quasilinear wave equations Ⅱ. Evolution Equations & Control Theory, 2017, 6 (4) : 615-628. doi: 10.3934/eect.2017031
References:
[1]

W. F. Ames and R. J. Lohner, Group properties of $u_{tt}=[f(u)u_x]_x $, Int. J. Non-linear Mech., 16 (1981), 439-447. Google Scholar

[2]

A. Bressan and Y. Zheng, Conservative solutions to a nonlinear variational wave equation, Comm. Math. Phys., 266 (2006), 471-497. doi: 10.1007/s00220-006-0047-8. Google Scholar

[3]

G. Chen and Y. Shen, Existence and regularity of solutions in nonlinear wave equations, Discrete Contin. Dyn. Syst. series A, 35 (2015), 3327-3342. doi: 10.3934/dcds.2015.35.3327. Google Scholar

[4]

R. T. GlasseyJ. K. Hunter and Y. Zheng, Singularities of a variational wave equation, J. Differential Equations, 129 (1996), 49-78. doi: 10.1006/jdeq.1996.0111. Google Scholar

[5]

R. T. GlasseyJ. K. Hunter and Y. Zheng, Singularities and oscillations in a nonlinear wave variational wave equation, Singularities and oscillations, The IMA Volumes in Mathematics and its applications, 91 (1997), 37-60. doi: 10.1007/978-1-4612-1972-9_3. Google Scholar

[6]

T. J. R. HughesT. Kato and J. E. Marsden, Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Ration. Mech. Anal., 63 (1977), 273-294. doi: 10.1007/BF00251584. Google Scholar

[7]

J. L. Johnson, Global continuous solutions of hyperbolic systems of quasilinear equations, Bull. Amer. Math. Soc., 73 (1967), 639-641. doi: 10.1090/S0002-9904-1967-11805-6. Google Scholar

[8]

K. Kato and Y. Sugiyama, Blow up of solutions to second sound equation in one space dimension, Kyushu J. Math., 67 (2013), 129-142. doi: 10.2206/kyushujm.67.129. Google Scholar

[9]

S. Klainerman and A. Majda, Formation of singularities for wave equations including the nonlinear vibrating string, Comm. Pure Appl. Math., 33 (1980), 241-263. doi: 10.1002/cpa.3160330304. Google Scholar

[10]

L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Course of Theoretical Physics, Vol. 6, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1959. Google Scholar

[11]

P. D. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Math. Phys., 5 (1964), 611-613. doi: 10.1063/1.1704154. Google Scholar

[12]

H. Lindblad, Global solutions of quasilinear wave equations, Amer. J. Math., 130 (2008), 115-157. doi: 10.1353/ajm.2008.0009. Google Scholar

[13]

R. C. MacCamy and V. J. Mizel, Existence and nonexistence in the large of solutions of quasilinear wave equations, Arch. Ration. Mech. Anal., 25 (1967), 299-320. doi: 10.1007/BF00250932. Google Scholar

[14]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer, Appl. Math. Sci., 1984. doi: 10.1007/978-1-4612-1116-7. Google Scholar

[15]

R. Manfrin, A note on the formation of singularities for quasi-linear hyperbolic systems, SIAM J. Math. Anal., 32 (2000), 261-290. Google Scholar

[16]

M.-Y. Qi, On the Cauchy problem for a class of hyperbolic equations with initial data on the parabolic degenerating line, Acta Math. Sinica, 8 (1958), 521-529. Google Scholar

[17]

Y. Sugiyama, Global existence of solutions to some quasilinear wave equation in one space dimension, Differential Integral Equations, 26 (2013), 487-504. Google Scholar

[18]

Y. Sugiyama, Degeneracy in finite time of 1D quasilinear wave equations, SIAM J. Math. Anal., 48 (2016), 847-860. doi: 10.1137/15M1016369. Google Scholar

[19]

Y. Sugiyama, Large time behavior of solutions to 1D quasilinear wave equations, RIMS Kôkyûroku Bessatsu, B63 (2017), 113-123.Google Scholar

[20]

K. Taniguchi and Y. Tozaki, A hyperbolic equation with double characteristics which has a solution with branching singularities, Math. Japonica, 25 (1980), 279-300. Google Scholar

[21]

M. E. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhauser Boston, 1991. doi: 10.1007/978-1-4612-0431-2. Google Scholar

[22]

M. K. Yagdjian, The Cauchy Problem for Hyperbolic Operators. Multiple Characteristics, Micro-Local Approach, Akademie Verlag, 1997. Google Scholar

[23]

M. Yamaguchi and T. Nishida, On some global solution for quasilinear hyperbolic equations, Funkcial. Ekvac., 11 (1968), 51-57. Google Scholar

[24]

N. J. Zabusky, Exact solution for the vibrations of a nonlinear continuous model string, J. Math. Phys., 3 (1962), 1028-1039. doi: 10.1063/1.1724290. Google Scholar

[25]

P. Zhang and Y. Zheng, Rarefactive solutions to a nonlinear variational wave equation of liquid crystals, Comm. Partial Differential Equations, 26 (2001), 381-419. doi: 10.1081/PDE-100002240. Google Scholar

[26]

P. Zhang and Y. Zheng, Singular and rarefactive solutions to a nonlinear variational wave equation, Chinese Ann. Math. Series B, 22 (2001), 159-170. doi: 10.1142/S0252959901000152. Google Scholar

[27]

P. Zhang and Y. Zheng, Weak solutions to a nonlinear variational wave equation, Arch. Ration. Mech. Anal., 166 (2003), 303-319. doi: 10.1007/s00205-002-0232-7. Google Scholar

show all references

References:
[1]

W. F. Ames and R. J. Lohner, Group properties of $u_{tt}=[f(u)u_x]_x $, Int. J. Non-linear Mech., 16 (1981), 439-447. Google Scholar

[2]

A. Bressan and Y. Zheng, Conservative solutions to a nonlinear variational wave equation, Comm. Math. Phys., 266 (2006), 471-497. doi: 10.1007/s00220-006-0047-8. Google Scholar

[3]

G. Chen and Y. Shen, Existence and regularity of solutions in nonlinear wave equations, Discrete Contin. Dyn. Syst. series A, 35 (2015), 3327-3342. doi: 10.3934/dcds.2015.35.3327. Google Scholar

[4]

R. T. GlasseyJ. K. Hunter and Y. Zheng, Singularities of a variational wave equation, J. Differential Equations, 129 (1996), 49-78. doi: 10.1006/jdeq.1996.0111. Google Scholar

[5]

R. T. GlasseyJ. K. Hunter and Y. Zheng, Singularities and oscillations in a nonlinear wave variational wave equation, Singularities and oscillations, The IMA Volumes in Mathematics and its applications, 91 (1997), 37-60. doi: 10.1007/978-1-4612-1972-9_3. Google Scholar

[6]

T. J. R. HughesT. Kato and J. E. Marsden, Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Ration. Mech. Anal., 63 (1977), 273-294. doi: 10.1007/BF00251584. Google Scholar

[7]

J. L. Johnson, Global continuous solutions of hyperbolic systems of quasilinear equations, Bull. Amer. Math. Soc., 73 (1967), 639-641. doi: 10.1090/S0002-9904-1967-11805-6. Google Scholar

[8]

K. Kato and Y. Sugiyama, Blow up of solutions to second sound equation in one space dimension, Kyushu J. Math., 67 (2013), 129-142. doi: 10.2206/kyushujm.67.129. Google Scholar

[9]

S. Klainerman and A. Majda, Formation of singularities for wave equations including the nonlinear vibrating string, Comm. Pure Appl. Math., 33 (1980), 241-263. doi: 10.1002/cpa.3160330304. Google Scholar

[10]

L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Course of Theoretical Physics, Vol. 6, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1959. Google Scholar

[11]

P. D. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Math. Phys., 5 (1964), 611-613. doi: 10.1063/1.1704154. Google Scholar

[12]

H. Lindblad, Global solutions of quasilinear wave equations, Amer. J. Math., 130 (2008), 115-157. doi: 10.1353/ajm.2008.0009. Google Scholar

[13]

R. C. MacCamy and V. J. Mizel, Existence and nonexistence in the large of solutions of quasilinear wave equations, Arch. Ration. Mech. Anal., 25 (1967), 299-320. doi: 10.1007/BF00250932. Google Scholar

[14]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer, Appl. Math. Sci., 1984. doi: 10.1007/978-1-4612-1116-7. Google Scholar

[15]

R. Manfrin, A note on the formation of singularities for quasi-linear hyperbolic systems, SIAM J. Math. Anal., 32 (2000), 261-290. Google Scholar

[16]

M.-Y. Qi, On the Cauchy problem for a class of hyperbolic equations with initial data on the parabolic degenerating line, Acta Math. Sinica, 8 (1958), 521-529. Google Scholar

[17]

Y. Sugiyama, Global existence of solutions to some quasilinear wave equation in one space dimension, Differential Integral Equations, 26 (2013), 487-504. Google Scholar

[18]

Y. Sugiyama, Degeneracy in finite time of 1D quasilinear wave equations, SIAM J. Math. Anal., 48 (2016), 847-860. doi: 10.1137/15M1016369. Google Scholar

[19]

Y. Sugiyama, Large time behavior of solutions to 1D quasilinear wave equations, RIMS Kôkyûroku Bessatsu, B63 (2017), 113-123.Google Scholar

[20]

K. Taniguchi and Y. Tozaki, A hyperbolic equation with double characteristics which has a solution with branching singularities, Math. Japonica, 25 (1980), 279-300. Google Scholar

[21]

M. E. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhauser Boston, 1991. doi: 10.1007/978-1-4612-0431-2. Google Scholar

[22]

M. K. Yagdjian, The Cauchy Problem for Hyperbolic Operators. Multiple Characteristics, Micro-Local Approach, Akademie Verlag, 1997. Google Scholar

[23]

M. Yamaguchi and T. Nishida, On some global solution for quasilinear hyperbolic equations, Funkcial. Ekvac., 11 (1968), 51-57. Google Scholar

[24]

N. J. Zabusky, Exact solution for the vibrations of a nonlinear continuous model string, J. Math. Phys., 3 (1962), 1028-1039. doi: 10.1063/1.1724290. Google Scholar

[25]

P. Zhang and Y. Zheng, Rarefactive solutions to a nonlinear variational wave equation of liquid crystals, Comm. Partial Differential Equations, 26 (2001), 381-419. doi: 10.1081/PDE-100002240. Google Scholar

[26]

P. Zhang and Y. Zheng, Singular and rarefactive solutions to a nonlinear variational wave equation, Chinese Ann. Math. Series B, 22 (2001), 159-170. doi: 10.1142/S0252959901000152. Google Scholar

[27]

P. Zhang and Y. Zheng, Weak solutions to a nonlinear variational wave equation, Arch. Ration. Mech. Anal., 166 (2003), 303-319. doi: 10.1007/s00205-002-0232-7. Google Scholar

Figure 1.  the two characteristic curves on the $(x,t)$ plane
[1]

Hiroshi Takeda. Large time behavior of solutions for a nonlinear damped wave equation. Communications on Pure & Applied Analysis, 2016, 15 (1) : 41-55. doi: 10.3934/cpaa.2016.15.41

[2]

Zhijian Yang, Zhiming Liu, Na Feng. Longtime behavior of the semilinear wave equation with gentle dissipation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6557-6580. doi: 10.3934/dcds.2016084

[3]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

[4]

Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603

[5]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[6]

Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic & Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601

[7]

Joana Terra, Noemi Wolanski. Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 581-605. doi: 10.3934/dcds.2011.31.581

[8]

Kazuhiro Ishige, Asato Mukai. Large time behavior of solutions of the heat equation with inverse square potential. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4041-4069. doi: 10.3934/dcds.2018176

[9]

Nakao Hayashi, Elena I. Kaikina, Pavel I. Naumkin. Large time behavior of solutions to the generalized derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 93-106. doi: 10.3934/dcds.1999.5.93

[10]

Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2005, 4 (4) : 861-869. doi: 10.3934/cpaa.2005.4.861

[11]

Guanggan Chen, Jian Zhang. Asymptotic behavior for a stochastic wave equation with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1441-1453. doi: 10.3934/dcdsb.2012.17.1441

[12]

Linglong Du. Long time behavior for the visco-elastic damped wave equation in $\mathbb{R}^n_+$ and the boundary effect. Networks & Heterogeneous Media, 2018, 13 (4) : 549-565. doi: 10.3934/nhm.2018025

[13]

Tai-Chia Lin. Vortices for the nonlinear wave equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 391-398. doi: 10.3934/dcds.1999.5.391

[14]

V. Pata, Sergey Zelik. A remark on the damped wave equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 611-616. doi: 10.3934/cpaa.2006.5.611

[15]

Eugenio Sinestrari. Wave equation with memory. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 881-896. doi: 10.3934/dcds.1999.5.881

[16]

Patrick Martinez, Judith Vancostenoble. Exact controllability in "arbitrarily short time" of the semilinear wave equation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 901-924. doi: 10.3934/dcds.2003.9.901

[17]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[18]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[19]

Laurent Bourgeois, Dmitry Ponomarev, Jérémi Dardé. An inverse obstacle problem for the wave equation in a finite time domain. Inverse Problems & Imaging, 2019, 13 (2) : 377-400. doi: 10.3934/ipi.2019019

[20]

Linglong Du, Caixuan Ren. Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n} $. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3265-3280. doi: 10.3934/dcdsb.2018319

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (13)
  • HTML views (87)
  • Cited by (0)

Other articles
by authors

[Back to Top]