-
Previous Article
Inverse observability inequalities for integrodifferential equations in square domains
- EECT Home
- This Issue
-
Next Article
Continuous data assimilation algorithm for simplified Bardina model
Self-similar solutions to nonlinear Dirac equations and an application to nonuniqueness
Department of Mathematics, Chung-Ang University, Seoul, 156-756, Korea |
Self-similar solutions to nonlinear Dirac systems (1) and (2) are constructed. As an application, we obtain nonuniqueness of strong solution in super-critical space $C([0, T]; H^{s}(\Bbb{R}))$ $(s<0)$ to the system (1) which is $L^2(\Bbb{R})$ scaling critical equations. Therefore the well-posedness theory breaks down in Sobolev spaces of negative order.
References:
[1] |
D. Agueev and D. Pelinovsky,
Modeling of wave resonances in low-contrast photonic crystals, SIAM J. Appl. Math., 65 (2005), 1101-1129.
doi: 10.1137/040606053. |
[2] |
T. Candy,
Global existence for an $L^2$ critical nonlinear Dirac equation in one dimension, Adv. Differential Equations, 16 (2011), 643-666.
|
[3] |
M. Christ, Nonuniqueness of weak solutions of the nonlinear Schrödinger equation, preprint, https://arxiv.org/abs/math/0503366. |
[4] |
V. Delgado,
Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac and other nonlinear Dirac equations in one space dimension, Proc. Amer. Math. Soc., 69 (1978), 289-296.
doi: 10.1090/S0002-9939-1978-0463658-5. |
[5] |
D. B. Dix,
Nonuniqueness and uniqueness in the initial-value problem for Burgers' equation, SIAM J. Math. Anal., 27 (1996), 708-724.
doi: 10.1137/0527038. |
[6] |
H. Huh,
Global strong solution to the Thirring model in critical space, J. Math. Anal. Appl., 381 (2011), 513-520.
doi: 10.1016/j.jmaa.2011.02.042. |
[7] |
H. Huh,
Remarks on nonlinear Dirac equations in one space dimension, Commun. Korean Math. Soc. Soc., 30 (2015), 201-208.
doi: 10.4134/CKMS.2015.30.3.201. |
[8] |
S. Selberg and A. Tesfahun,
Low regularity well-posedness for some nonlinear Dirac equations in one space dimension, Differential and Integral Equations, 23 (2010), 265-278.
|
show all references
References:
[1] |
D. Agueev and D. Pelinovsky,
Modeling of wave resonances in low-contrast photonic crystals, SIAM J. Appl. Math., 65 (2005), 1101-1129.
doi: 10.1137/040606053. |
[2] |
T. Candy,
Global existence for an $L^2$ critical nonlinear Dirac equation in one dimension, Adv. Differential Equations, 16 (2011), 643-666.
|
[3] |
M. Christ, Nonuniqueness of weak solutions of the nonlinear Schrödinger equation, preprint, https://arxiv.org/abs/math/0503366. |
[4] |
V. Delgado,
Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac and other nonlinear Dirac equations in one space dimension, Proc. Amer. Math. Soc., 69 (1978), 289-296.
doi: 10.1090/S0002-9939-1978-0463658-5. |
[5] |
D. B. Dix,
Nonuniqueness and uniqueness in the initial-value problem for Burgers' equation, SIAM J. Math. Anal., 27 (1996), 708-724.
doi: 10.1137/0527038. |
[6] |
H. Huh,
Global strong solution to the Thirring model in critical space, J. Math. Anal. Appl., 381 (2011), 513-520.
doi: 10.1016/j.jmaa.2011.02.042. |
[7] |
H. Huh,
Remarks on nonlinear Dirac equations in one space dimension, Commun. Korean Math. Soc. Soc., 30 (2015), 201-208.
doi: 10.4134/CKMS.2015.30.3.201. |
[8] |
S. Selberg and A. Tesfahun,
Low regularity well-posedness for some nonlinear Dirac equations in one space dimension, Differential and Integral Equations, 23 (2010), 265-278.
|
[1] |
Abdelwahab Bensouilah, Sahbi Keraani. Smoothing property for the $ L^2 $-critical high-order NLS Ⅱ. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2961-2976. doi: 10.3934/dcds.2019123 |
[2] |
Ruoci Sun. Filtering the $ L^2- $critical focusing Schrödinger equation. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5973-5990. doi: 10.3934/dcds.2020255 |
[3] |
Yanheng Ding, Xiaojing Dong, Qi Guo. On multiplicity of semi-classical solutions to nonlinear Dirac equations of space-dimension $ n $. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4105-4123. doi: 10.3934/dcds.2021030 |
[4] |
Yongkuan Cheng, Yaotian Shen. Generalized quasilinear Schrödinger equations with concave functions $ l(s^2) $. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1311-1343. doi: 10.3934/dcds.2019056 |
[5] |
Silvia Frassu. Nonlinear Dirichlet problem for the nonlocal anisotropic operator $ L_K $. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1847-1867. doi: 10.3934/cpaa.2019086 |
[6] |
Liejun Shen, Marco Squassina, Minbo Yang. Critical gauged Schrödinger equations in $ \mathbb{R}^2 $ with vanishing potentials. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022059 |
[7] |
Khalid Latrach, Hssaine Oummi, Ahmed Zeghal. Existence results for nonlinear mono-energetic singular transport equations: $ L^p $-spaces. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 179-195. doi: 10.3934/dcdss.2021028 |
[8] |
Yong Luo, Shu Zhang. Concentration behavior of ground states for $ L^2 $-critical Schrödinger Equation with a spatially decaying nonlinearity. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1481-1504. doi: 10.3934/cpaa.2022026 |
[9] |
Abdelwahab Bensouilah, Van Duong Dinh, Mohamed Majdoub. Scattering in the weighted $ L^2 $-space for a 2D nonlinear Schrödinger equation with inhomogeneous exponential nonlinearity. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2735-2755. doi: 10.3934/cpaa.2019122 |
[10] |
Jiangang Qi, Bing Xie. Extremum estimates of the $ L^1 $-norm of weights for eigenvalue problems of vibrating string equations based on critical equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3505-3516. doi: 10.3934/dcdsb.2020243 |
[11] |
Shaoming Guo, Xianfeng Ren, Baoxiang Wang. Local well-posedness for the derivative nonlinear Schrödinger equation with $ L^2 $-subcritical data. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4207-4253. doi: 10.3934/dcds.2021034 |
[12] |
Zhen-Zhen Tao, Bing Sun. Error estimates for spectral approximation of flow optimal control problem with $ L^2 $-norm control constraint. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022030 |
[13] |
Dongyi Liu, Genqi Xu. Input-output $ L^2 $-well-posedness, regularity and Lyapunov stability of string equations on networks. Networks and Heterogeneous Media, 2022 doi: 10.3934/nhm.2022007 |
[14] |
Sawsan Alhowaity, Ernesto Pérez-Chavela, Juan Manuel Sánchez-Cerritos. The curved symmetric $ 2 $– and $ 3 $–center problem on constant negative surfaces. Communications on Pure and Applied Analysis, 2021, 20 (9) : 2941-2963. doi: 10.3934/cpaa.2021090 |
[15] |
Peili Li, Xiliang Lu, Yunhai Xiao. Smoothing Newton method for $ \ell^0 $-$ \ell^2 $ regularized linear inverse problem. Inverse Problems and Imaging, 2022, 16 (1) : 153-177. doi: 10.3934/ipi.2021044 |
[16] |
Xinghong Pan, Jiang Xu. Global existence and optimal decay estimates of the compressible viscoelastic flows in $ L^p $ critical spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2021-2057. doi: 10.3934/dcds.2019085 |
[17] |
Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124 |
[18] |
Xuerui Gao, Yanqin Bai, Shu-Cherng Fang, Jian Luo, Qian Li. A new hybrid $ l_p $-$ l_2 $ model for sparse solutions with applications to image processing. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021211 |
[19] |
Hongyong Cui, Peter E. Kloeden, Wenqiang Zhao. Strong $ (L^2,L^\gamma\cap H_0^1) $-continuity in initial data of nonlinear reaction-diffusion equation in any space dimension. Electronic Research Archive, 2020, 28 (3) : 1357-1374. doi: 10.3934/era.2020072 |
[20] |
Justin Forlano. Almost sure global well posedness for the BBM equation with infinite $ L^{2} $ initial data. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 267-318. doi: 10.3934/dcds.2020011 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]