March  2018, 7(1): 53-60. doi: 10.3934/eect.2018003

Self-similar solutions to nonlinear Dirac equations and an application to nonuniqueness

Department of Mathematics, Chung-Ang University, Seoul, 156-756, Korea

Received  August 2017 Revised  November 2017 Published  January 2018

Self-similar solutions to nonlinear Dirac systems (1) and (2) are constructed. As an application, we obtain nonuniqueness of strong solution in super-critical space $C([0, T]; H^{s}(\Bbb{R}))$ $(s<0)$ to the system (1) which is $L^2(\Bbb{R})$ scaling critical equations. Therefore the well-posedness theory breaks down in Sobolev spaces of negative order.

Citation: Hyungjin Huh. Self-similar solutions to nonlinear Dirac equations and an application to nonuniqueness. Evolution Equations & Control Theory, 2018, 7 (1) : 53-60. doi: 10.3934/eect.2018003
References:
[1]

D. Agueev and D. Pelinovsky, Modeling of wave resonances in low-contrast photonic crystals, SIAM J. Appl. Math., 65 (2005), 1101-1129.  doi: 10.1137/040606053.  Google Scholar

[2]

T. Candy, Global existence for an $L^2$ critical nonlinear Dirac equation in one dimension, Adv. Differential Equations, 16 (2011), 643-666.   Google Scholar

[3]

M. Christ, Nonuniqueness of weak solutions of the nonlinear Schrödinger equation, preprint, https://arxiv.org/abs/math/0503366. Google Scholar

[4]

V. Delgado, Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac and other nonlinear Dirac equations in one space dimension, Proc. Amer. Math. Soc., 69 (1978), 289-296.  doi: 10.1090/S0002-9939-1978-0463658-5.  Google Scholar

[5]

D. B. Dix, Nonuniqueness and uniqueness in the initial-value problem for Burgers' equation, SIAM J. Math. Anal., 27 (1996), 708-724.  doi: 10.1137/0527038.  Google Scholar

[6]

H. Huh, Global strong solution to the Thirring model in critical space, J. Math. Anal. Appl., 381 (2011), 513-520.  doi: 10.1016/j.jmaa.2011.02.042.  Google Scholar

[7]

H. Huh, Remarks on nonlinear Dirac equations in one space dimension, Commun. Korean Math. Soc. Soc., 30 (2015), 201-208.  doi: 10.4134/CKMS.2015.30.3.201.  Google Scholar

[8]

S. Selberg and A. Tesfahun, Low regularity well-posedness for some nonlinear Dirac equations in one space dimension, Differential and Integral Equations, 23 (2010), 265-278.   Google Scholar

show all references

References:
[1]

D. Agueev and D. Pelinovsky, Modeling of wave resonances in low-contrast photonic crystals, SIAM J. Appl. Math., 65 (2005), 1101-1129.  doi: 10.1137/040606053.  Google Scholar

[2]

T. Candy, Global existence for an $L^2$ critical nonlinear Dirac equation in one dimension, Adv. Differential Equations, 16 (2011), 643-666.   Google Scholar

[3]

M. Christ, Nonuniqueness of weak solutions of the nonlinear Schrödinger equation, preprint, https://arxiv.org/abs/math/0503366. Google Scholar

[4]

V. Delgado, Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac and other nonlinear Dirac equations in one space dimension, Proc. Amer. Math. Soc., 69 (1978), 289-296.  doi: 10.1090/S0002-9939-1978-0463658-5.  Google Scholar

[5]

D. B. Dix, Nonuniqueness and uniqueness in the initial-value problem for Burgers' equation, SIAM J. Math. Anal., 27 (1996), 708-724.  doi: 10.1137/0527038.  Google Scholar

[6]

H. Huh, Global strong solution to the Thirring model in critical space, J. Math. Anal. Appl., 381 (2011), 513-520.  doi: 10.1016/j.jmaa.2011.02.042.  Google Scholar

[7]

H. Huh, Remarks on nonlinear Dirac equations in one space dimension, Commun. Korean Math. Soc. Soc., 30 (2015), 201-208.  doi: 10.4134/CKMS.2015.30.3.201.  Google Scholar

[8]

S. Selberg and A. Tesfahun, Low regularity well-posedness for some nonlinear Dirac equations in one space dimension, Differential and Integral Equations, 23 (2010), 265-278.   Google Scholar

[1]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[2]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[3]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[4]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[5]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[6]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[7]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[8]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[9]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[10]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[11]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[12]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[13]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[14]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[15]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[16]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[17]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[18]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[19]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[20]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (176)
  • HTML views (401)
  • Cited by (0)

Other articles
by authors

[Back to Top]